【題目】如圖,已知拋物線y=x2+bx+c與x軸相交于A(﹣1,0),B(m,0)兩點,與y軸相交于點C(0,﹣3),拋物線的頂點為D.
(1)求B、D兩點的坐標;
(2)若P是直線BC下方拋物線上任意一點,過點P作PH⊥x軸于點H,與BC交于點M,設F為y軸一動點,當線段PM長度最大時,求PH+HF+CF的最小值;
(3)在第(2)問中,當PH+HF+CF取得最小值時,將△OHF繞點O順時針旋轉60°后得到△OH′F′,過點F′作OF′的垂線與x軸交于點Q,點R為拋物線對稱軸上的一點,在平面直角坐標系中是否存在點S,使得點D、Q、R、S為頂點的四邊形為菱形,若存在,請直接寫出點S的坐標,若不存在,請說明理由.
【答案】(1)B(3,0),D(1,﹣4);(2);(3)存在,S的坐標為(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣)
【解析】
(1)將A(﹣1,0)、C(0,﹣3)代入y=x2+bx+c,待定系數(shù)法即可求得拋物線的解析式,再配方即可得到頂點D的坐標,根據(jù)y=0,可得點B的坐標;
(2)根據(jù)BC的解析式和拋物線的解析式,設P(x,x2﹣2x﹣3),則M(x,x﹣3),表示PM的長,根據(jù)二次函數(shù)的最值可得:當x=時,PM的最大值,此時P(,﹣),進而確定F的位置:在x軸的負半軸了取一點K,使∠OCK=30°,過F作FN⊥CK于N,當N、F、H三點共線時,如圖2,FH+FN最小,即PH+HF+CF的值最小,根據(jù)含30°角的直角三角形的性質(zhì),即可得結論;
(3)先根據(jù)旋轉確定Q的位置,與點A重合,根據(jù)菱形的判定畫圖,分4種情況討論:分別以DQ為邊和對角線進行討論,根據(jù)菱形的邊長相等和平移的性質(zhì),可得點S的坐標.
(1)把A(﹣1,0),點C(0,﹣3)代入拋物線y=x2+bx+c,得:
,解得:,
∴拋物線的解析式為:y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴頂點D(1,﹣4),
當y=0時,x2﹣2x﹣3=0,解得:x=3或﹣1,
∴B(3,0);
(2)∵B(3,0),C(0,﹣3),
設直線BC的解析式為:y=kx+b,
則 ,解得:,
∴直線BC的解析式為:y=x﹣3,
設P(x,x2﹣2x﹣3),則M(x,x﹣3),
∴PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣x2+3x=﹣(x﹣)2+,
當x=時,PM有最大值,此時P(,﹣),
在x軸的負半軸了取一點K,使∠OCK=30°,過F作FN⊥CK于N,
∴FN=CF,
當N、F、H三點共線時,如圖1,FH+FN最小,即PH+HF+CF的值最小,
∵Rt△OCK中,∠OCK=30°,OC=3,
∴OK=,
∵OH=,
∴KH=+,
∵Rt△KNH中,∠KHN=30°,
∴KN=KH=,
∴NH=KN=,
∴PH+HF+CF的最小值=PH+NH==;
(3)Rt△OFH中,∠OHF=30°,OH=,
∴OF=OF'=,
由旋轉得:∠FOF'=60°
∴∠QOF'=30°,
∴在Rt△QF'O中,QF'=OF'÷=÷=,OQ=2QF'=2×=1,
∴Q與A重合,即Q(﹣1,0)
分4種情況:
①如圖2,以QD為邊時,由菱形和拋物線的對稱性可得S(3,0);
②如圖3,以QD為邊時,
由勾股定理得:AD=,
∵四邊形DQSR是菱形,
∴QS=AD=2,QS∥DR,
∴S(﹣1,﹣2);
③如圖4,同理可得:S(﹣1,2);
④如圖5,作AD的中垂線,交對稱軸于R,可得菱形QSDR,
∵A(﹣1,0),D(1,﹣4),
∴AD的中點N的坐標為(0,﹣2),且AD=2,
∴DN=,
cos∠ADR=,
∴DR=,
∴QS= DR=,
∴S(﹣1,﹣);
綜上,S的坐標為(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣).
科目:初中數(shù)學 來源: 題型:
【題目】若整數(shù)a使關于x的分式方程=2有整數(shù)解,且使關于x的不等式組至少有4個整數(shù)解,則滿足條件的所有整數(shù)a的和是( 。
A.﹣14B.﹣17C.﹣20D.﹣23
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC是等腰直角三角形,∠BAC=90°,將△ABC繞點C順時針方向旋轉得到△A′B′C,記旋轉角為α,當90°<α<180°時,作A′D⊥AC,垂足為D,A′D與B′C交于點E.
(1)如圖1,當∠CA′D=15°時,作∠A′EC的平分線EF交BC于點F.
①寫出旋轉角α的度數(shù);
②求證:EA′+EC=EF;
(2)如圖2,在(1)的條件下,設P是直線A′D上的一個動點,連接PA,PF,若AB=,求線段PA+PF的最小值.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2在第一象限內(nèi)經(jīng)過的整數(shù)點(橫坐標、縱坐標都為整數(shù)的點)依次為A1,A2,A3…An,將拋物線y=x2沿直線L:y=x向上平移,得到一系列拋物線,且滿足下列條件:①拋物線的頂點M1,M2,M3,…Mn都在直線L:y=x上;②拋物線依次經(jīng)過點A1,A2,A3…An,則頂點M2020的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將小正方形AEFG繞大正方形ABCD的頂點A順時針旋轉一定的角度α(其中0°≤α≤90°),連接BG、DE相交于點O,再連接AO、BE、DG.王凱同學在探究該圖形的變化時,提出了四個結論:
①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE,其中結論正確的個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地2016年為做好“精準扶貧”,投入資金1000萬元用于異地安置,并規(guī)劃投入資金逐年增加,2018年在2016年的基礎上增加投入資金1250萬元.
(1)從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?
(2)在2018年異地安置的具體實施中,該地計劃投入資金不低于400萬元用于優(yōu)先搬遷租房獎勵,規(guī)定前1000戶(含第1000戶)每戶每天獎勵8元,1000戶以后每戶每天補助5元,按租房400天計算,試求今年該地至少有多少戶享受到優(yōu)先搬遷租房獎勵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC分別交AC的延長線于點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)若AC=8,CE=4,求弧BD的長.(結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°,D為BC邊上一點,(不與點B、C)重合,將線段AD繞點A逆時針旋轉60°得到AE,連接EC,則∠ACE的度數(shù)是__________,線段AC,CD,CE之間的數(shù)量關系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D為BC邊上一點(不與點B、C重合),將線段AD繞點A逆時針旋轉90°得到AE,連接EC,請寫出∠ACE的度數(shù)及線段AD,BD,CD之間的數(shù)量關系,并說明理由.
(3)如圖3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若點A滿足AB=AC,∠BAC=90°,請直接寫出線段AD的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小飛設計的“過圓外一點作圓的切線”的尺規(guī)作圖過程.
已知:P為⊙O外一點.
求作:經(jīng)過點P的⊙O的切線.
作法:如圖,
①連接OP,作線段OP的垂直平分線交OP于點A;
②以點A為圓心,OA的長為半徑作圓,交⊙O于B,C兩點;
③作直線PB,PC.所以直線PB,PC就是所求作的切線.
根據(jù)小飛設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī)補全圖形(保留作圖痕跡);
(2)完成下面的證明(說明:括號里填寫推理的依據(jù)).
證明:連接,,
∵為⊙的直徑,
∴ ( ).
∴,.
∴,為⊙的切線( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com