【題目】如圖,在等邊三角形ABC中,AD⊥BC于點D,以AD為一邊向右作等邊三角形ADE,DE與AC交于點F.

(1)試判斷DF與EF的數(shù)量關(guān)系,并給出證明;

(2)若CF的長為2 cm,試求等邊三角形ABC的邊長.

【答案】(1)DF=EF (2) 8cm

【解析】

(1)根據(jù)等邊三角形的每一個角都是60°可得∠BAC=DAE=60°,再根據(jù)等腰三角形三線合一的性質(zhì)求出BD=DC,BAD=DAC=30°,然后得到∠DAC=CAE,然后根據(jù)等腰三角形三線合一的性質(zhì)即可得證;(2)求出∠CDF=30°,然后根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半解答即可.

:(1)DF=EF.
理由: ∵△ABCADE均是等邊三角形,
∴∠BAC=DAE=60°,
ADBC,
BD=DC,BAD=DAC=×60°=30°,
∴∠CAE=60°-30°=30°,
即∠DAC=CAE,
AC垂直平分DE,
DF=EF;
(2)RTDFC, ∵∠FCD=60°, CFD=90°,
∴∠CDF=90°-60°=30°,
CF=2cm,
DC=4cm,
BC=2DC=2×4=8cm,
即等邊三角形ABC的邊長為8cm.

(1)DF=EF.證明:∵△ABC是等邊三角形,∴∠BAC=60°,又∵ADBC,∴∠DAC=30°.∵△ADE是等邊三角形,∴∠DAE=60°,∴∠DAF=EAF=30°,由三線合一知DF=EF (2)BC=2CD=2×2CF=8 cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算錯誤的是( )

A. (-2)0=1 B. 28x4y2÷7x3=4xy2

C. (4xy2-6x2y+2xy)÷2xy=2y-3x D. (a-5)(a+3)=a2-2a-15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)報道,深圳今年4 月2 日至4 月8 日每天的最高氣溫變化如圖所示.則關(guān)于這七天的最高氣溫的數(shù)據(jù),下列判斷中錯誤的是(
A.平均數(shù)是26
B.眾數(shù)是26
C.中位數(shù)是27
D.方差是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點點出發(fā),沿路線運動,到點停止;點點出發(fā),沿運動,到點停止.若點、點同時出發(fā),點的速度為每秒,點的速度為每秒,秒時點、點同時改變速度,點的速度變?yōu)槊棵?/span>,點的速度變?yōu)槊棵?/span>.如圖是點出發(fā)秒后的面積(秒)的函數(shù)關(guān)系圖象;圖是點出發(fā)秒后的面積(秒)的函數(shù)關(guān)系圖象.根據(jù)圖象:

、、的值;

設(shè)點出發(fā)(秒)后離開點的路程為,請寫出的函數(shù)關(guān)系式,并求出點相遇時的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABE中,∠A=105°,AE的垂直平分線MNBE于點C,且AB+BC=BE,則∠B的度數(shù)是( 。

A. 45° B. 60° C. 50° D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,則下列結(jié)論中不正確的是(  )

A. 當(dāng)AB=BC時,四邊形ABCD是菱形

B. 當(dāng)ACBD時,四邊形ABCD是菱形

C. 當(dāng)∠ABC=90°時,四邊形ABCD是矩形

D. 當(dāng)AC=BD時,四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在一次愛心捐款活動中,全體同學(xué)積極踴躍捐款.現(xiàn)抽查了九年級(1)班全班同學(xué)捐款情況,并繪制出如下的統(tǒng)計表和統(tǒng)計圖:

求:(1)m=__________,n=__________;

(2)求學(xué)生捐款數(shù)目的眾數(shù)、中位數(shù)和平均數(shù);

(3)若該校有學(xué)生2500人,估計該校學(xué)生共捐款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)y=2x2+4x+m﹣1,與x軸的公共點為A,B.
(1)如果A與B重合,求m的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點; ①當(dāng)m=1時,求線段AB上整點的個數(shù);
②若設(shè)拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)整點的個數(shù)為n,當(dāng)1<n<8時,結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠設(shè)門市部專賣某產(chǎn)品,該產(chǎn)品每件成本40元,從開業(yè)一段時間的每天銷售統(tǒng)計中,隨機(jī)抽取一部分情況如下表所示:

每件銷售價(元)

50

60

70

75

80

85

每天售出件數(shù)

300

240

180

150

120

90

假設(shè)當(dāng)天定的售價是不變的,且每天銷售情況均服從這種規(guī)律.
(1)觀察這些統(tǒng)計數(shù)據(jù),找出每天售出件數(shù)y與每件售價x(元)之間的函數(shù)關(guān)系,并寫出該函數(shù)關(guān)系式.
(2)門市部原設(shè)有兩名營業(yè)員,但當(dāng)銷售量較大時,在每天售出量超過168件時,則必須增派一名營業(yè)員才能保證營業(yè)有序進(jìn)行,設(shè)營業(yè)員每人每天工資為40元.求每件產(chǎn)品應(yīng)定價多少元,才能使每天門市部純利潤最大(純利潤指的是收入總價款扣除成本及營業(yè)員工資后的余額,其它開支不計)

查看答案和解析>>

同步練習(xí)冊答案