(2012•綏化)如圖,在平行四邊形ABCD中,E是CD上的一點(diǎn),DE:EC=2:3,連接AE、BE、BD,且AE、BD交于點(diǎn)F,則S△DEF:S△EBF:S△ABF=( 。
分析:根據(jù)平行四邊形的性質(zhì)求出DC=AB,DC∥AB,求出DE:AB=2:5,根據(jù)相似三角形的判定推出△DEF∽△BAF,求出△DEF和△ABF的面積比,根據(jù)三角形的面積公式求出△DEF和△EBF的面積比,即可求出答案.
解答:解:根據(jù)圖形知:△DEF的邊DF和△BFE的邊BF上的高相等,并設(shè)這個(gè)高為h,
∵四邊形ABCD是平行四邊形,
∴DC=AB,DC∥AB,
∵DE:EC=2:3,
∴DE:AB=2:5,
∵DC∥AB,
∴△DEF∽△BAF,
S△DEF
S△ABF
=(
DE
AB
)
2
=
4
25
,
DE
AB
=
DF
BF
=
2
5

S△DEF
S△EBF
=
1
2
×DF×h
1
2
×BF×h
=
DF
BF
=
2
5
=
4
10

∴S△DEF:S△EBF:S△ABF=4:10:25,
故選D.
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì)和判定,三角形的面積,平行四邊形的性質(zhì)的應(yīng)用,關(guān)鍵是求出
DE
AB
DF
BF
的值,注意:相似三角形的面積比等于相似比的平方,若兩三角形不相似,求面積比應(yīng)根據(jù)三角形的面積公式求.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綏化)如圖,點(diǎn)A、B、C、D為⊙O的四等分點(diǎn),動(dòng)點(diǎn)P從圓心O出發(fā),沿OC-
CD
-DO的路線做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,∠APB的度數(shù)為y度,則下列圖象中表示y(度)與t(秒)之間函數(shù)關(guān)系最恰當(dāng)?shù)氖牵ā 。?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綏化)如圖,二次函數(shù)y=ax2-4x+c的圖象經(jīng)過坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A(-4,0).
(1)求二次函數(shù)的解析式;
(2)在拋物線上存在點(diǎn)P,滿足S△AOP=8,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綏化)如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上,O、M也在格點(diǎn)上.
(1)畫出△ABC關(guān)于直線OM對稱的△A1B1C1
(2)畫出△ABC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°后所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形嗎?如果是軸對稱圖形,請畫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綏化)如圖,AB∥ED,∠ECF=70°,則∠BAF的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綏化)如圖,四邊形ABCD為矩形,C點(diǎn)在x軸上,A點(diǎn)在y軸上,D點(diǎn)坐標(biāo)是(0,0),B點(diǎn)坐標(biāo)是(3,4),矩形ABCD沿直線EF折疊,點(diǎn)A落在BC邊上的G處,E、F分別在AD、AB上,且F點(diǎn)的坐標(biāo)是(2,4).
(1)求G點(diǎn)坐標(biāo);
(2)求直線EF解析式;
(3)點(diǎn)N在x軸上,直線EF上是否存在點(diǎn)M,使以M、N、F、G為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出M點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案