【題目】在平面直角坐標系xOy中,⊙O的半徑是5,點A為⊙O上一點,AB⊥x軸于點B,AC⊥y軸于點C,若四邊形ABOC的面積為12,寫出一個符合條件的點A的坐標

【答案】(3,4)
【解析】解:設點A坐標為(x,y), 則AO2=x2+y2=25,
由xy=12或xy=﹣12,
當xy=12時,
可得(x+y)2﹣2xy=25,即(x+y)2﹣24=25,
∴x+y=7或x+y=﹣7,
①若x+y=7,即y=7﹣x,代入xy=12得x2﹣7x+12=0,
解得:x=3或x=4,
當x=3時,y=4;當x=4時,y=3;
即點A(3,4)或(4,3);
②若x+y=﹣7,則y=﹣7﹣x,代入xy=12得:x2+7x+12=0,
解得:x=﹣3或x=﹣4,
當x=﹣3時,y=﹣4;當x=﹣4時,y=﹣3;
即點A(﹣3,﹣4)或(﹣4,﹣3);
當xy=﹣12時,
可得(x+y)2﹣2xy=25,即(x+y)2+24=25,
∴x+y=1或x+y=﹣1,
③若x+y=1,即y=1﹣x,代入xy=﹣12得x2﹣x﹣12=0,
解得:x=﹣3或x=4,
當x=﹣3時,y=4;當x=4時,y=﹣3;
即點A(﹣3,4)或(4,﹣3);
④若x+y=﹣1,則y=﹣1﹣x,代入xy=﹣12得:x2+x﹣12=0,
解得:x=3或x=﹣4,
當x=3時,y=﹣4;當x=﹣4時,y=3;
即點A(3,﹣4)或(﹣4,3);
所以答案是:(3,4),(答案不唯一).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD的頂點A(﹣ ,0),∠DAB=60°,若動點P從點A出發(fā),沿A→B→C→D→A→B→…的路徑,在菱形的邊上以每秒0.5個單位長度的速度移動,則第2017秒時,點P的坐標為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b和反比例函數(shù)y= 的圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出不等式kx+b﹣ <0的解集;
(3)P是x軸上的一點,且滿足△APB的面積是9,寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=x+1的圖象與反比例函數(shù) (k為常數(shù),且k≠0)的圖象都經(jīng)過點A(m,2).
(1)求點A的坐標及反比例函數(shù)的表達式;
(2)設一次函數(shù)y=x+1的圖象與x軸交于點B,若點P是x軸上一點,且滿足△ABP的面積是2,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:
“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.
例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=20.
(1)已知點A(1,2),B(﹣3,1),P(0,t).
①若A,B,P三點的“矩面積”為12,求點P的坐標;
②直接寫出A,B,P三點的“矩面積”的最小值.
(2)已知點E(4,0),F(xiàn)(0,2),M(m,4m),N(n, ),其中m>0,n>0.
①若E,F(xiàn),M三點的“矩面積”為8,求m的取值范圍;
②直接寫出E,F(xiàn),N三點的“矩面積”的最小值及對應n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y=﹣2x+4與x軸交于點A,與y軸交于點B,直線y=kx+b(k,b是常數(shù),k≠0)經(jīng)過點A,與y軸交于點C,且OC=OA.
(1)求點A的坐標及k的值;
(2)點C在x軸的上方,點P在直線y=﹣2x+4上,若PC=PB,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.哥哥的身高比弟弟高是必然事件
B.今年中秋節(jié)有雨是不確定事件
C.隨機拋一枚均勻的硬幣兩次,都是正面朝上是不可能事件
D.“彩票中獎的概率為 ”表示買5張彩票肯定會中獎

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB經(jīng)過⊙O上的點C,且OA=OB,CA=CB,OA交⊙O于點E.
(1)證明:直線AB與⊙O相切;
(2)若AE=a,AB=b,求⊙O的半徑;(結果用a,b表示)
(3)過點C作弦CD⊥OA于點H,試探究⊙O的直徑與OH、OB之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年起,深圳市實施行人闖紅燈違法處罰,處罰方式分為四類:“罰款20元”、“罰款50元”、“罰款100元”、“穿綠馬甲維護交通”.如圖是實施首日由某片區(qū)的執(zhí)法結果整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:
(1)實施首日,該片區(qū)行人闖紅燈違法受處罰一共人;
(2)在所有闖紅燈違法受處罰的行人中,穿綠馬甲維護交通所占的百分比是%;
(3)據(jù)了解,“罰款20元”人數(shù)是“罰款50元”人數(shù)的2倍,請補全條形統(tǒng)計圖;
(4)根據(jù)(3)中的信息,在扇形統(tǒng)計圖中,“罰款20元”所在扇形的圓心角等于度.

查看答案和解析>>

同步練習冊答案