【題目】綜合與探究

如圖,拋物線yx2+bx+cx軸交于A、B兩點,與y軸交于C點,OA2,OC6,連接ACBC

1)求拋物線的解析式;

2)點D在拋物線的對稱軸上,當(dāng)△ACD的周長最小時,點D的坐標(biāo)為 

3)點E是第四象限內(nèi)拋物線上的動點,連接CEBE.求△BCE面積的最大值及此時點E的坐標(biāo);

4)若點My軸上的動點,在坐標(biāo)平面內(nèi)是否存在點N,使以點AC、M、N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由.

【答案】1yx2x6;(2)(,﹣5);(3)點E坐標(biāo)為(,﹣)時,△BCE面積最大,最大值為;(4)存在點N,點N坐標(biāo)為(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).

【解析】

1)用待定系數(shù)法求解;

2當(dāng)點B、D、C在同一直線上時,CACDAC+AD+CDAC+BD+CDAC+BC最;求出直線BCy2x6,可進(jìn)一步求解;

3過點EEGx軸于點G,交直線BC與點F,設(shè)Et,t2t6)(0t3),則Ft,2t6,EF2t6﹣(t2t6)=﹣t2+3tSBCESBEF+SCEF=﹣t2+,可得結(jié)果;

4存在點N,使以點AC、MN為頂點的四邊形是菱形.可分情況若AC為菱形的邊長,MNAC且,MNAC2;AC為菱形的對角線,則AN4CM4,AN4CN4,N4(﹣2n),由勾股定理可求n.

1)∵OA2,OC6

A(﹣20),C0,﹣6

∵拋物線yx2+bx+c過點A、C

解得:

∴拋物線解析式為yx2x6

2)∵當(dāng)y0時,x2x60,解得:x1=﹣2,x23

B3,0),拋物線對稱軸為直線x

∵點D在直線x上,點A、B關(guān)于直線x對稱

xD,ADBD

∴當(dāng)點B、DC在同一直線上時,CACDAC+AD+CDAC+BD+CDAC+BC最小

設(shè)直線BC解析式為ykx6

3k60,解得:k2

∴直線BCy2x6

yD2×6=﹣5

D,﹣5

故答案為:(,﹣5

3)過點EEGx軸于點G,交直線BC與點F

設(shè)Et,t2t6)(0t3),則Ft2t6

EF2t6﹣(t2t6)=﹣t2+3t

SBCESBEF+SCEFEFBG+EFOGEFBG+OG)=EFOB×3(﹣t2+3t)=﹣t2+

∴當(dāng)t時,△BCE面積最大

yE=(26=﹣

∴點E坐標(biāo)為(,﹣)時,△BCE面積最大,最大值為

4)存在點N,使以點ACM、N為頂點的四邊形是菱形.

A(﹣2,0),C0,﹣6

AC

AC為菱形的邊長,如圖3,

MNAC且,MNAC2

N1(﹣2,2),N2(﹣2,﹣2),N32,0

AC為菱形的對角線,如圖4,則AN4CM4,AN4CN4

設(shè)N4(﹣2n

∴﹣n

解得:n=﹣

N4(﹣2,﹣

綜上所述,點N坐標(biāo)為(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,航模小組用無人機(jī)來測量建筑物BC的高度,無人機(jī)從A處測得建筑物頂部B的仰角為45°,測得底部C的俯角為60°,若此時無人機(jī)與該建筑物的水平距離AD30m,則該建筑物的高度BC_____m.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山東省煙臺市)某中學(xué)廣場上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC4米,落在斜坡上的影長CD3米,ABBC,同一時刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長QR2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC為等邊三角形, M為三角形外任意一點,把△ABM繞著點A按逆時針方向旋轉(zhuǎn)60°到△CAN的位置.

(1)如圖①,若∠BMC=120°,BM=2MC=3.求∠AMB的度數(shù)和求AM的長.

(2)如圖②,若∠BMC = n°,試寫出AM、BMCM之間的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BC5E,F分別是ABAC的中點,動點P在射線EF上,BPCE于點D,∠CBP的平分線交CE于點Q,當(dāng)CQCE時,EP+BP的值為(  )

A.10B.8C.6D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c經(jīng)過O、A4,0)、B55)三點,直線l交拋物線于點B,交y軸于點C0,﹣4).點P是拋物線上一個動點.

1)求拋物線的解析式;

2)點P關(guān)于直線OB的對稱點恰好落在直線l上,求點P的坐標(biāo);

3M是線段OB上的一個動點,過點M作直線MNx軸,交拋物線于點N.當(dāng)以M、NB為頂點的三角形與OBC相似時,直接寫出點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD被分割成兩個小梯形①②,和一個小正方形③,去掉③后,①和②可剪拼成一個新的梯形,若EFAD2,BCEF1,則AB的長是(

A.6B.3C.9D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中,順次連接各邊中點得正方形A1B1C1D1,又依次連接正方形A1B1C1D1各邊中點得正方形A2B2C2D2,以此規(guī)律已知作下去,那么正方形A8B8C8D8的周長是

查看答案和解析>>

同步練習(xí)冊答案