【題目】如圖,△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中線,AE是△ABD的角平分線,DF∥AB交AE延長線于F,則DF的長為 .
【答案】
【解析】
試題根據(jù)等腰三角形三線合一的性質(zhì)可得到AD⊥BC,∠BAD=∠CAD,從而可得到∠BAD=60°,∠ADB=90°,再根據(jù)角平分線的性質(zhì)即可得到∠DAE=∠EAB=30°,從而可推出AD=DF,根據(jù)直角三角形30度角的性質(zhì)即可求得AD的長,即得到了DF的長.
∵△ABC是等腰三角形,D為底邊的中點(diǎn),
∴AD⊥BC,∠BAD=∠CAD,
∵∠BAC=120°,
∴∠BAD=60°,∠ADB=90°,
∵AE是∠BAD的角平分線,
∴∠DAE=∠EAB=30°.
∵DF∥AB,
∴∠F=∠BAE=30°.
∴∠DAF=∠F=30°,
∴AD=DF.
∵AB=9,∠B=30°,
∴AD=,
∴DF=,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖放置的兩個(gè)正方形,大正方形ABCD邊長為a,小正方形CEFG邊長為b(a>b),M在BC邊上,且BM=b,連接AM,MF,MF交CG于點(diǎn)P,將△ABM繞點(diǎn)A旋轉(zhuǎn)至△ADN,將△MEF繞點(diǎn)F旋轉(zhuǎn)至△NGF,給出以下五個(gè)結(jié)論:①∠MAD=∠AND;②CP=b﹣ ;③△ABM≌△NGF;④S四邊形AMFN=a2+b2;⑤A,M,P,D四點(diǎn)共圓,其中正確的個(gè)數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠ABC=90°,在直線AB上取一點(diǎn)M,使AM=BC,過點(diǎn)A作AE⊥AB且AE=BM,連接EC,再過點(diǎn)A作AN∥EC,交直線CM、CB于點(diǎn)F、N.
(1)如圖1,若點(diǎn)M在線段AB邊上時(shí),求∠AFM的度數(shù);
(2)如圖2,若點(diǎn)M在線段BA的延長線上時(shí),且∠CMB=15°,求∠AFM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,矩形OABC的邊OA、OC分別落在x軸、y軸上,O為坐標(biāo)原點(diǎn),且OA=8,OC=4,連接AC,將矩形OABC對折,使點(diǎn)A與點(diǎn)C重合,折痕ED與BC交于點(diǎn)D,交OA于點(diǎn)E,連接AD,如圖①.
(1)求點(diǎn)D的坐標(biāo)和AD所在直線的函數(shù)關(guān)系式;
(2)⊙M的圓心M始終在直線AC上(點(diǎn)A除外),且⊙M始終與x軸相切,如圖②.
①求證:⊙M與直線AD相切;
②圓心M在直線AC上運(yùn)動(dòng),在運(yùn)動(dòng)過程中,能否與y軸也相切?如果能相切,求出此時(shí)⊙M與x軸、y軸和直線AD都相切時(shí)的圓心M的坐標(biāo);如果不能相切,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?
(2)在實(shí)際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】縣內(nèi)某小區(qū)正在緊張建設(shè)中,現(xiàn)有大量的沙石需要運(yùn)輸,“建安”車隊(duì)有載重量為8噸、10噸的卡車共12輛,全部車輛運(yùn)輸一次能運(yùn)輸110噸沙石.
(1)求“建安”車隊(duì)載重量為8噸、10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,“建安”車隊(duì)需要一次運(yùn)輸沙石165噸以上,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共6輛,車隊(duì)有多少種購買方案,請你一一寫出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛貨車從A地開往B地,一輛小汽車從B地開往A地.同時(shí)出發(fā),都勻速行駛,各自到達(dá)終點(diǎn)后停止.設(shè)貨車、小汽車之間的距離為s(千米),貨車行駛的時(shí)間為t(小時(shí)),S與t之間的函數(shù)關(guān)系如圖所示.下列說法中正確的有( )
①A、B兩地相距60千米;
②出發(fā)1小時(shí),貨車與小汽車相遇;
③小汽車的速度是貨車速度的2倍;
④出發(fā)1.5小時(shí),小汽車比貨車多行駛了60千米.
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OE⊥AB于O,若∠BOD=40°,則不正確的結(jié)論是( )
A.∠AOC=40° B.∠COE=130° C.∠EOD=40° D.∠BOE=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)畫出△ABC和△A1B1C1關(guān)于原點(diǎn)O對稱,畫出△A1B1C1,并寫出△A1B1C1的各頂點(diǎn)的坐標(biāo);
(2)將△ABC繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2C2,畫出△A2B2C2,并寫出△A2B2C2的各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com