【題目】如圖:在正方形網(wǎng)格中有一個(gè)△ABC,按要求進(jìn)行下列作圖(只能借助于網(wǎng)格):

1)畫出△ABCBC邊上的高AD

2)畫出先將△ABC向右平移6格,再向上平移3格后的△A1B1C1

3)若格點(diǎn)△PAB與格點(diǎn)△PBC的面積相等,則這樣的點(diǎn)P______個(gè).

【答案】(1)詳見解析;(2)詳見解析;(3)4

【解析】

1)根據(jù)網(wǎng)格特點(diǎn)和正方形的性質(zhì)畫出高AD即可;

2)利用網(wǎng)格特點(diǎn)和平移的性質(zhì)畫出△A1B1C1即可;

3)建立直角坐標(biāo)系,根據(jù)點(diǎn)到直線的距離公式列出方程求解即可得到兩條直線,找出這兩條直線上的格點(diǎn)即可.

1)如圖所示,AD即為所求;

2)如圖所示,△A1B1C1即為所求.

3)如圖,以B為原點(diǎn),AB所在直線為x軸,過B點(diǎn)與AB垂直的直線為y軸,建立直角坐標(biāo)系,設(shè)

∴直線AB的解析式為y=0,直線BC的解析式為y=x

∵格點(diǎn)△PAB與格點(diǎn)△PBC的面積相等

如圖,作直線和直線,找出這兩條直線上的格點(diǎn)即可

這樣的點(diǎn)P4個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OA1B1C的對(duì)角線A1COB1交于點(diǎn)M1;M1A1為對(duì)角線作第二個(gè)正方形A2A1B2M,對(duì)角線A1M1A2B2交于點(diǎn)M2;M2A1為對(duì)角線作第三個(gè)正方形A3A1B3M2,對(duì)角線A1M2A3B3交于點(diǎn)M3;..依此類推,這樣作的第6個(gè)正方形對(duì)角線交點(diǎn)的坐標(biāo)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)y=y=(x>0,0<m<n)的圖象上,對(duì)角線BDy軸,且BDAC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)PBD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某經(jīng)銷商從市場(chǎng)得知如下信息:

某品牌空調(diào)扇

某品牌電風(fēng)扇

進(jìn)價(jià)(元/臺(tái))

700

100

售價(jià)(元/臺(tái))

900

160

他現(xiàn)有40000元資金可用來一次性購(gòu)進(jìn)該品牌空調(diào)扇和電風(fēng)扇共100臺(tái),設(shè)該經(jīng)銷商購(gòu)進(jìn)空調(diào)扇臺(tái),空調(diào)扇和電風(fēng)扇全部銷售完后獲得利潤(rùn)為.

1)求關(guān)于的函數(shù)解析式;

2)利用函數(shù)性質(zhì),說明該經(jīng)銷商如何進(jìn)貨可獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校組織八年級(jí)350名學(xué)生參加漢字聽寫大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績(jī)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

成績(jī)x/

頻數(shù)

頻率

50≤x<60

2

0.04

60≤x<70

6

0.12

70≤x<80

9

b

80≤x<90

a

0.36

90≤x≤100

15

0.30

請(qǐng)根據(jù)所給信息,解答下列問題:

1)求ab的值;

2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,C=90°,AC=12BC=9,AB=15,若動(dòng)點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒3個(gè)單位,設(shè)運(yùn)動(dòng)的時(shí)間為t.

1)當(dāng)t=______時(shí),CPABC的面積分成相等的兩部分;

2)當(dāng)t=5時(shí),CPABC分成的兩部分面積之比是SAPCSBPC=______

3)當(dāng)t=______時(shí),BPC的面積為18.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,有一長(zhǎng)方形的空地,長(zhǎng)為米,寬為米,建筑商把它分成甲、乙、丙三部分,甲和乙為正方形.現(xiàn)計(jì)劃甲建筑成住宅區(qū),乙建成商場(chǎng)丙開辟成公園.

請(qǐng)用含的代數(shù)式表示正方形乙的邊長(zhǎng); ;

若丙地的面積為平方米,請(qǐng)求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上有A,B,C三個(gè)點(diǎn),分別表示有理數(shù)﹣24,﹣10,10,動(dòng)點(diǎn)PA出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

(1)用含t的代數(shù)式表示點(diǎn)PA的距離:PA=   ;點(diǎn)P對(duì)應(yīng)的數(shù)是   ;

(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),若P、Q同時(shí)出發(fā),求:當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P和點(diǎn)Q間的距離為8個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校240名學(xué)生參加植樹活動(dòng),要求每人植樹47棵,活動(dòng)結(jié)束后抽查了20名學(xué)生每人的植樹量,并分為四類:A4棵、B5棵、C6棵、D7棵,將各類的人數(shù)繪制成如圖所示不完整的條形統(tǒng)計(jì)圖,回答下列問題:

1)補(bǔ)全條形圖;

2)寫出這20名學(xué)生每人植樹量的眾數(shù)和中位數(shù);

3)估計(jì)這240名學(xué)生共植樹多少棵?

查看答案和解析>>

同步練習(xí)冊(cè)答案