【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,若DF⊥AC,∠ADF:∠FDC=3:2,則∠BDF= .
【答案】18°
【解析】
試題分析:根據(jù)∠ADC=90°,求出∠CDF和∠ADF,根據(jù)矩形性質(zhì)求出OD=OC,推出∠BDC=∠DCO,求出∠BDC,即可求出答案.
解:設(shè)∠ADF=3x°,∠FDC=2x°,
∵四邊形ABCD是矩形,
∴∠ADC=90°,
∴2x+3x=90,
x=18°,
即∠FDC=2x°=36°,
∵DF⊥AC,
∴∠DMC=90°,
∴∠DCO=90°﹣36°=54°,
∵四邊形ABCD是矩形,
∴AC=2OC,BD=2OD,AC=BD,
∴OD=OC,
∴∠BDC=∠DCO=54°,
∴∠BDF=∠BDC﹣∠CDF=54°﹣36°=18°,
故答案為:18°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】至2010年10月30日上海世博會累計(jì)入園人數(shù)約7277.99萬人,這個(gè)數(shù)據(jù)精確到( )
A. 百分位 B. 百位 C. 千位 D. 萬位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一方有難,八方支援”.四川汶川大地震牽動著全國人民的心,我市某醫(yī)院準(zhǔn)備從甲、乙、丙三位醫(yī)生和A、B兩名護(hù)士中選取一位醫(yī)生和一名護(hù)士支援汶川.
(1)若隨機(jī)選一位醫(yī)生和一名護(hù)士,用樹狀圖(或列表法)表示所有可能出現(xiàn)的結(jié)果;
(2)求恰好選中醫(yī)生甲和護(hù)士A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對稱軸是直線x=1.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)D(n,y1),E(3,y2)在拋物線上,若y1<y2,請直接寫出n的取值范圍;
(3)設(shè)點(diǎn)M(p,q)為拋物線上的一個(gè)動點(diǎn),當(dāng)﹣1<p<2時(shí),點(diǎn)M關(guān)于y軸的對稱點(diǎn)都在直線y=kx﹣4的上方,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,DE為正方形的外角∠ADF的角平分線,點(diǎn)G在線段AD上,過點(diǎn)G作PG⊥DE于點(diǎn)P,連接CP,過點(diǎn)D作DQ⊥PC于點(diǎn)Q,交射線PG于點(diǎn)H.
(1)如圖1,若點(diǎn)G與點(diǎn)A重合.
①依題意補(bǔ)全圖1;
②判斷DH與PC的數(shù)量關(guān)系并加以證明;
(2)如圖2,若點(diǎn)H恰好在線段AB上,正方形ABCD的邊長為1,請寫出求DP長的思路(可以不寫出計(jì)算結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=﹣x2+bx+c的圖象過點(diǎn)(﹣1,﹣8),(0,﹣3).
(1)求此二次函數(shù)的表達(dá)式,并用配方法將其化為y=a(x﹣h)2+k的形式;
(2)畫出此函數(shù)圖象的示意圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過格點(diǎn)A,B,C作一圓弧,點(diǎn)B與下列格點(diǎn)的連線中,能夠與該圓弧相切的是( )
A.點(diǎn)(0,3) B.點(diǎn)(2,3) C.點(diǎn)(5,1) D.點(diǎn)(6,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,AE是BC邊上的高,將△ABE沿BC方向平移,使點(diǎn)E與點(diǎn)C重合,得△GFC.
(1)求證:BE=DG;
(2)若∠B=60°,當(dāng)AB與BC滿足什么數(shù)量關(guān)系時(shí),四邊形ABFG是菱形?證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com