【題目】知識(shí)準(zhǔn)備:數(shù)軸上兩點(diǎn)對(duì)應(yīng)的數(shù)分別為.則兩點(diǎn)之間的距離表示為:
問(wèn)題探究:數(shù)軸上兩點(diǎn)對(duì)應(yīng)的數(shù)分別為且滿足
直接寫出:___、
在數(shù)軸上有一點(diǎn)對(duì)應(yīng)的數(shù)為,請(qǐng)問(wèn):當(dāng)點(diǎn)到兩點(diǎn)的距離和為時(shí),滿足什么條件?請(qǐng)利用數(shù)軸進(jìn)行說(shuō)明(此時(shí)最小).
拓展:當(dāng)數(shù)軸上三點(diǎn)對(duì)應(yīng)的數(shù)分別為在數(shù)軸上有一點(diǎn)對(duì)應(yīng)的數(shù)為,當(dāng)滿足什么條件時(shí),的值最小?
應(yīng)用:國(guó)慶期間漢口江灘武漢關(guān)至長(zhǎng)江二橋之間是觀看“70周年國(guó)慶燈光秀”的理想?yún)^(qū)域,武漢關(guān)與長(zhǎng)江二橋相距約公里。在國(guó)慶期間,為了服務(wù)廣大市民,漢口江灘管理處在漢口江灘武漢關(guān)至長(zhǎng)江二橋之間每隔公里安排了便民服務(wù)小組(武漢關(guān)與長(zhǎng)江二橋不安排) ,還需要設(shè)置一個(gè)便民服務(wù)物資站,請(qǐng)問(wèn)便民服務(wù)物資站應(yīng)該設(shè)置在什么地方,使它到各個(gè)便民服務(wù)小組的距離和最小,最小值是多少公里?便民服務(wù)物資站位置代表的數(shù)記作利用下圖直接給出結(jié)果:滿足的條件: 最小值為 公里.
【答案】問(wèn)題探究:(1),; (2);拓展:當(dāng)時(shí),最小時(shí)為;應(yīng)用:;4
【解析】
問(wèn)題探究:
(1)根據(jù)非負(fù)數(shù)的性質(zhì)可得和的值;
(2)根據(jù)絕對(duì)值的幾何意義,可得當(dāng)點(diǎn)P在AB之間(包括A,B兩點(diǎn)),P到A點(diǎn)與P到B點(diǎn)的距離之和是6,即PA+PB最;
拓展:點(diǎn)P在點(diǎn)A和點(diǎn)B(含點(diǎn)A和點(diǎn)B)之間,依此即可求解.
應(yīng)用:同理根據(jù)拓展的問(wèn)題,分情況即可求解.
問(wèn)題探究:
(1)∵.
∴,,
∴,;
故答案為:,;
(2)如圖1,
點(diǎn)P到A、B兩點(diǎn)的距離和為6時(shí),點(diǎn)P在AB之間(包括A,B兩點(diǎn)),即,此時(shí)PA+PB最;
拓展:
點(diǎn)P表示的數(shù)為2,該最小值為12,
設(shè)P到A、B、C的距離和為d,
則,
①當(dāng)時(shí),,
時(shí),;
②當(dāng)時(shí),,
時(shí),;
③當(dāng)時(shí),>12,
④當(dāng)x>8時(shí)>18;
綜上,當(dāng)點(diǎn)P表示的數(shù)為2時(shí),P到A、B、C的距離和最小,最小值為12.
應(yīng)用:
如圖3,設(shè)便民服務(wù)物資站為點(diǎn)P,各便民服務(wù)小組分別為A,B,C,D,
設(shè)P到A、B、C、D的距離和為d,
則,
①當(dāng)時(shí),,
時(shí),;
②當(dāng)時(shí),>4,
③當(dāng)時(shí),,
④當(dāng)時(shí),>4,
⑤當(dāng)時(shí),,
當(dāng)時(shí),;
綜上,滿足的條件:,最小值為4公里.
故答案為:,4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形 ABCD 的對(duì)角線交于點(diǎn) E,且 AE=EC,BE=ED,以 AD 為直徑的半圓過(guò)點(diǎn) E,圓心 為 O.
(1)如圖①,求證:四邊形 ABCD 為菱形;
(2)如圖②,若 BC 的延長(zhǎng)線與半圓相切于點(diǎn) F,且直徑 AD=6,求弧AE 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小淇在說(shuō)明 “直角三角形斜邊上的中線等于斜邊的一半”是真命題,部分思路如下:如圖,在∠ACB內(nèi)做∠BCD=∠B,CD與AB相交于點(diǎn)D,…….請(qǐng)根據(jù)以上思路,完成證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】時(shí)代中學(xué)從學(xué)生興趣出發(fā),實(shí)施體育活動(dòng)課走班制.為了了解學(xué)生最喜歡的一種球類運(yùn)動(dòng),以便合理安排活動(dòng)場(chǎng)地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運(yùn)動(dòng)的1200名學(xué)生中,隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查(每人只能在這五種球類運(yùn)動(dòng)中選擇一種).調(diào)查結(jié)果統(tǒng)計(jì)如下:
球類名稱 | 乒乓球 | 羽毛球 | 排球 | 籃球 | 足球 |
人數(shù) | 42 | 15 | 33 |
解答下列問(wèn)題:
(1)這次抽樣調(diào)查中的樣本是________;
(2)統(tǒng)計(jì)表中,________,________;
(3)試估計(jì)上述1200名學(xué)生中最喜歡乒乓球運(yùn)動(dòng)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中BA=BC,點(diǎn)D是AB延長(zhǎng)線上一點(diǎn),DF⊥AC于F交BC于E,
求證:△DBE是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我市農(nóng)產(chǎn)品整體品牌形象“聊勝一籌!”的推出,現(xiàn)代農(nóng)業(yè)得到了更快發(fā)展.某農(nóng)場(chǎng)為擴(kuò)大生產(chǎn)建設(shè)了一批新型鋼管裝配式大棚,如圖1.線段AB,BD分別表示大棚的墻高和跨度,AC表示保溫板的長(zhǎng).已知墻高AB為2米,墻面與保溫板所成的角∠BAC=150°,在點(diǎn)D處測(cè)得A點(diǎn)、C點(diǎn)的仰角分別為9°,15.6°,如圖2.求保溫板AC的長(zhǎng)是多少米?(精確到0.1米)
(參考數(shù)據(jù):≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與軸分別交于原點(diǎn)和點(diǎn),與對(duì)稱軸交于點(diǎn).矩形的邊在軸正半軸上,且,邊,與拋物線分別交于點(diǎn),.當(dāng)矩形沿軸正方向平移,點(diǎn),位于對(duì)稱軸的同側(cè)時(shí),連接,此時(shí),四邊形的面積記為;點(diǎn),位于對(duì)稱軸的兩側(cè)時(shí),連接,,此時(shí)五邊形的面積記為.將點(diǎn)與點(diǎn)重合的位置作為矩形平移的起點(diǎn),設(shè)矩形平移的長(zhǎng)度為.
(1)求出這條拋物線的表達(dá)式;
(2)當(dāng)時(shí),求的值;
(3)當(dāng)矩形沿著軸的正方向平移時(shí),求關(guān)于的函數(shù)表達(dá)式,并求出為何值時(shí),有最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織一項(xiàng)公益知識(shí)競(jìng)賽,比賽規(guī)定:每個(gè)班級(jí)由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場(chǎng)參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場(chǎng)參賽的概率.(請(qǐng)用“畫樹(shù)狀圖”或“列表”或“列舉”等方法給出分析過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從邊長(zhǎng)為a的大正方形中剪掉一個(gè)邊長(zhǎng)為b的小正方形,將陰影部分剪下,拼成右邊的矩形,由圖形①到圖形②的變化過(guò)程能夠驗(yàn)證的一個(gè)等式是( 。
A. a(a+b)=a2+ab B. a2﹣b2=(a+b)(a﹣b)
C. (a+b)2=a2+2ab+b2 D. a(a﹣b)=a2﹣ab
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com