【題目】如圖,在正方形ABCD和正方形AEFG中,邊AE在邊AB上,AB=,AE=1.將正方形AEFG繞點(diǎn)A逆時針旋轉(zhuǎn),設(shè)BE的延長線交直線DG于點(diǎn)P,當(dāng)點(diǎn)P,G第一次重合時停止旋轉(zhuǎn).在這個過程中:
(1)∠BPD=______度;
(2)點(diǎn)P所經(jīng)過的路徑長為______.
【答案】90.
【解析】
(1)根據(jù)正方形性質(zhì)證△EAB≌△GAD(SAS),得∠ABE=∠ADG,由∠ABE+∠AOB=90°,∠AOB=∠DOP,得∠DOP+∠ADG=90°;(2)當(dāng)P、G重合時,作AH⊥BG于H.點(diǎn)P經(jīng)過路徑是圖中弧AG.根據(jù)三角函數(shù)知識,求出∠ABH=30°,∠AOG=2∠ABG=60°,的長=.
解:(1)如圖1中,設(shè)AD交PB于點(diǎn)O.
∵四邊形ABCD,四邊形AEFG都是正方形,
∴AB=AD,AE=AG,∠DAB=∠GAE,
∴∠EAB=∠GAD,
∴△EAB≌△GAD(SAS),
∴∠ABE=∠ADG,
∵∠ABE+∠AOB=90°,∠AOB=∠DOP,
∴∠DOP+∠ADG=90°,
∴∠BPD=90°.
故答案為90.
(2)如圖2中,當(dāng)P、G重合時,作AH⊥BG于H.
∵∠BPD=90°,
∴點(diǎn)P經(jīng)過路徑是圖中弧AG.
∵AE=AG=1,∠EAG=90°,
∴EG=,
∵AH⊥EG,
∴HG=HE,
∴AH=,
∴sin∠ABH=,
∴∠ABH=30°,
∴∠AOG=2∠ABG=60°,
∴的長=.
故答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了40m,此時自B處測得建筑物頂部的仰角是45°.已知測角儀的高度是1.5m,請你計(jì)算出該建筑物的高度.(結(jié)果精確到1m)(參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某商品標(biāo)牌的示意圖,⊙O與等邊△ABC的邊BC相切于點(diǎn)C,且⊙O的直徑與△ABC的高相等,已知等邊△ABC邊長為4,設(shè)⊙O與AC相交于點(diǎn)E,則AE的長為( 。
A.B.1C.﹣1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個結(jié)論:①4a+2b+c>0;②abc<0;③b<a﹣c;④3b>2c;⑤a+b<m(am+b),(m≠1的實(shí)數(shù));其中正確結(jié)論的個數(shù)為( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的頂點(diǎn)A在x軸上,頂點(diǎn)C在y軸上,D是BC的中點(diǎn),過點(diǎn)D的反比例函數(shù)圖象交AB于E點(diǎn),連接DE.若OD=5,tan∠COD=.
(1)求過點(diǎn)D的反比例函數(shù)的解析式;
(2)求△DBE的面積;
(3)x軸上是否存在點(diǎn)P使△OPD為直角三角形?若存在,請直接寫出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O的半徑為4,點(diǎn)A是⊙O上一點(diǎn),直線l過點(diǎn)A;P是⊙O上的一個動點(diǎn)(不與點(diǎn)A重合),過點(diǎn)P作PB⊥l于點(diǎn)B,交⊙O于點(diǎn)E,直徑PD延長線交直線l于點(diǎn)F,點(diǎn)A是的中點(diǎn).
(1)求證:直線l是⊙O的切線;
(2)若PA=6,求PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了打造書香城市,截止2019年3月洛陽市有17家河洛書苑書房對社會免費(fèi)開放.某書房為了解讀者閱讀的情況,隨機(jī)調(diào)查了部分讀者在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計(jì)圖表.
讀者借閱圖書的次數(shù)統(tǒng)計(jì)表
借閱圖書的次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次及以上 |
人數(shù) | 7 | 13 | a | 10 | 3 |
請你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:
(1)a= ,b= ;
(2)這組數(shù)據(jù)的眾數(shù)為 ,中位數(shù)為 ;
(3)請計(jì)算扇形統(tǒng)計(jì)圖中的“4次”所對應(yīng)的圓心角的度數(shù);
(4)據(jù)統(tǒng)計(jì)該書房一周共有2000位不同的讀者,根據(jù)以上調(diào)查結(jié)果,請你計(jì)算出一周內(nèi)借閱圖書“4次及以上”的讀者人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,O為對角線BD的中點(diǎn),EF經(jīng)過點(diǎn)O分別交AD、BC于E、F兩點(diǎn),
(1)如圖1,求證:AE=CF;
(2)如圖2,若EF⊥BD,∠AEB=60°,請你直接寫出與DE(DE除外)相等的所有線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,CE交AD于點(diǎn)F,交BD于點(diǎn)G.甲,乙兩位同學(xué)對條件進(jìn)行分折后,甲得到結(jié)論:“CE=BD”.乙得到結(jié)論:“CDAE=EFCG”請判斷甲,乙兩位同學(xué)的結(jié)論是否正確,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com