【題目】如圖,轉(zhuǎn)盤A的三個(gè)扇形面積相等,分別標(biāo)有數(shù)字1,2,3,轉(zhuǎn)盤B的四個(gè)扇形面積相等,分別有數(shù)字1,2,3,4.轉(zhuǎn)動(dòng)A、B轉(zhuǎn)盤各一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),將指針?biāo)渖刃沃械膬蓚(gè)數(shù)字相乘(當(dāng)指針落在四個(gè)扇形的交線上時(shí),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤).

(1)用樹狀圖或列表法列出所有可能出現(xiàn)的結(jié)果;

(2)求兩個(gè)數(shù)字的積為奇數(shù)的概率.

【答案】(1)共有12種等可能的結(jié)果;(2)

【解析】

試題分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;

(2)由兩個(gè)數(shù)字的積為奇數(shù)的情況,再利用概率公式即可求得答案.

試題解析:(1)畫樹狀圖得:

則共有12種等可能的結(jié)果;

(2)兩個(gè)數(shù)字的積為奇數(shù)的4種情況,

兩個(gè)數(shù)字的積為奇數(shù)的概率為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù)2、﹣1、82、﹣1、a的眾數(shù)為2,則這組數(shù)據(jù)的平均數(shù)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解方程x2﹣2x﹣6=0時(shí),原方程應(yīng)變形為( )
A.(x+1)2=7
B.(x﹣1)2=7
C.(x+2)2=10
D.(x﹣2)2=10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。
A.兩點(diǎn)之間的距離是兩點(diǎn)間的線段
B.同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線平行
C.與同一條直線垂直的兩條直線也垂直
D.同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2﹣2x+3 的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

(1)求A,B,C三點(diǎn)的坐標(biāo).

(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A,B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQAB交拋物線于點(diǎn)Q,過點(diǎn)Q作QNx軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PMNQ的周長最大時(shí),求AEM的面積.

(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連結(jié)DQ.過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=2DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x2y-4xy+4y=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖,線段AC上依次有D,B,E三點(diǎn),其中點(diǎn)B為線段AC的中點(diǎn),AD=BE,若DE=4,求線段AC的長.
請補(bǔ)全以下解答過程.
解:∵D,B,E三點(diǎn)依次在線段AC上,
∴DE=+BE.
∵AD=BE,
∴DE=DB+=AB.
∵DE=4,
∴AB=4.
,
∴AC=2AB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是假命題的是(

A. 三角形的角平分線都在三角形內(nèi)部 B. 三角形的三條高都在三角形內(nèi)部

C. 三角形的三條中線都在三角形內(nèi)部 D. 三角形的三條角平分線相交于一點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+1與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).

(1)求拋物線的解析式;

(2)點(diǎn)P是第一象限拋物線上的一點(diǎn),連接PA、PB、PO,若POA的面積是POB面積的倍.

求點(diǎn)P的坐標(biāo);

點(diǎn)Q為拋物線對稱軸上一點(diǎn),請直接寫出QP+QA的最小值;

(3)點(diǎn)M為直線AB上的動(dòng)點(diǎn),點(diǎn)N為拋物線上的動(dòng)點(diǎn),當(dāng)以點(diǎn)O、B、M、N為頂點(diǎn)的四邊形是平行四邊形時(shí),請直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案