【題目】如圖,四邊形中,,在上分別找一點,使周長最小時,則的度數(shù)為(

A.B.C.D.

【答案】C

【解析】

根據(jù)要使AMN的周長最小,即利用點的對稱,讓三角形的三邊在同一直線上,作出A關(guān)于BCCD的對稱點A′,A″,即可得出∠AA′M+A″=60°,進(jìn)而得出∠AMN+ANM=2(∠AA′M+A″)即可得出答案.

A關(guān)于BCCD的對稱點A′,A″,連接A′A″,BCM,CDN,A′A″即為AMN的周長最小值。,

∵∠DAB=120°,

∴∠AA′M+A″=180°120°=60°,

∵∠MA′A=MAA′,∠NAD=A″

且∠MA′A+MAA′=AMN,∠NAD+A″=ANM,

∴∠AMN+ANM=MA′A+MAA′+NAD+A″=2(AA′M+A″)=2×60°=120°,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:

(1)(9x3y12xy33xy2)÷(3xy)(2yx)(2yx),其中x1,y=-2;

(2)(mn)(mn)(mn)22m2,其中m、n滿足方程組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)興趣小組的活動中,小明進(jìn)行數(shù)學(xué)探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當(dāng)點B恰好落在線段DG上時,請你幫他求出此時BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某初級中學(xué)數(shù)學(xué)興趣小組為了了解本校學(xué)生的年齡情況,隨機調(diào)查了該校部分學(xué)生的年齡,整理數(shù)據(jù)并繪制如下不完整的統(tǒng)計圖.

依據(jù)以上信息解答以下問題:

(1)求樣本容量;

(2)直接寫出樣本容量的平均數(shù),眾數(shù)和中位數(shù);

(3)若該校一共有1800名學(xué)生,估計該校年齡在15歲及以上的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由6個大小相同的小正方形組成的方格中,設(shè)每個小正方形的邊長均為1.

1)如圖①,,,是三個格點(即小正方形的頂點),判斷的位置關(guān)系,并說明理由;

2)如圖②,連接三格和兩格的對角線,求的度數(shù)(要求:畫出示意圖,并寫出證明過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,FCCD,∠1=∠2,∠B60°.

1)求∠BCF的度數(shù);(2)如果DE是∠ADC的平分線,那么DEAB平行嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點I為△ABC的內(nèi)心,AB=4AC=3,BC=2,將∠ACB平移使其頂點與I重合,則圖中陰影部分的周長為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC看,∠BAC=90°,AC=12,AB=10,DAC上一個動點,以AD為直徑的⊙O交BDE,則線段CE的最小值是(

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技進(jìn)步,無人機的應(yīng)用越來越廣,如圖1,在某一時刻,無人機上的探測器顯示,從無人機A處看一棟樓頂部B點的仰角和看與頂部B在同一鉛垂線上高樓的底部C的俯角.

(1)如果上述仰角與俯角分別為30°60°,且該樓的高度為30米,求該時刻無人機的豎直高度CD;

(2)如圖2,如果上述仰角與俯角分別為αβ,且該樓的高度為m米.求用α、β、m表示該時刻無人機的豎直高度CD.

查看答案和解析>>

同步練習(xí)冊答案