【題目】如圖,反比例函數(shù)y=的圖象上,點A是該圖象第一象限分支上的動點,連結(jié)AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結(jié)BP,在點A運動過程中,當(dāng)BP平分∠ABC時,點A的坐標(biāo)為_____.
【答案】(,)
【解析】分析:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,則有△AOE≌△OCF,進而可得出AE=OF、OE=CF,根據(jù)角平分線的性質(zhì)可得出,設(shè)點A的坐標(biāo)為(a,)(a>0),由可求出a值,進而得到點A的坐標(biāo).
詳解:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,如圖所示.
∵△ABC為等腰直角三角形,
∴OA=OC,OC⊥AB,
∴∠AOE+∠COF=90°.
∵∠COF+∠OCF=90°,
∴∠AOE=∠OCF.
在△AOE和△OCF中,
,
∴△AOE≌△OCF(AAS),
∴AE=OF,OE=CF.
∵BP平分∠ABC,
∴,
∴.
設(shè)點A的坐標(biāo)為(a,),
∴,
解得:a=或a=-(舍去),
∴=,
∴點A的坐標(biāo)為(,),
故答案為:((,)).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
關(guān)于x的方程:x+=c+的解為x1=c,x2=;x﹣=c﹣(可變形為x+=c+)的解為x1=c,x2=;x+=c+的解為x1=c,x2= Zx+=c+的解為x1=c,x2=Z.
(1)歸納結(jié)論:根據(jù)上述方程與解的特征,得到關(guān)于x的方程x+=c+(m≠0)的解為 .
(2)應(yīng)用結(jié)論:解關(guān)于y的方程y﹣a=﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中, ,點在上,連結(jié),且.
(1)如圖1,求的度數(shù);
(2) 如圖2, 點在的垂直平分線上,連接,過點作于點,交于點,若,,求證: 是等腰直角三角形;
(3)如圖3,在(2)的條件下,連接,過點作 交于點,且,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進一步發(fā)展基礎(chǔ)教育,自2014年以來,某縣加大了教育經(jīng)費的投入,2014年該縣投入教育經(jīng)費6000萬元。2016年投入教育經(jīng)費8640萬元。假設(shè)該縣這兩年投入教育經(jīng)費的年平均增長率相同。
(1)求這兩年該縣投入教育經(jīng)費的年平均增長率;
(2)若該縣教育經(jīng)費的投入還將保持相同的年平均增長率,請你預(yù)算2017年該縣投入教育經(jīng)費多少萬元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在面積為15的平行四邊形ABCD中,過點A作AE垂直于直線BC于點E,
作AF垂直于直線CD于點F,若AB=5,BC=6,則CE+CF的值為( )
A.11+B.11-
C.11+或11-D.11-或1+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.
(1)求∠A的度數(shù).
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則DF的長等于( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com