【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,DA∥BC,tan∠DBA= ,若CD=2 ,則線段BC的長為 .
【答案】6
【解析】解:過D作DE⊥AB于E,DF⊥BC于F, ∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∵DA∥BC,
∴∠DAE=∠ABC=45°,
∴AE=DE,
設(shè)AE=DE=x,
∵tan∠DBA= ,
∴BE=2x,
∴BD= x,AB=AC=3x,
∴BC=3 x,
∴DF= x,
∴BF= x,
∴CF= x,
∵DF2+CF2=CD2 ,
∴( x)2+( x)2=(2 )2 ,
∴x=2,
∴BC=6 .
所以答案是:6 ,
【考點(diǎn)精析】本題主要考查了解直角三角形的相關(guān)知識點(diǎn),需要掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,將點(diǎn)A翻折到對角線BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對角線BD上的點(diǎn)N處,折痕DF交BC于點(diǎn)F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共5只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)請估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會接近;(精確到0.1)
(2)試估算口袋中白種顏色的球有多少只?
(3)請畫樹狀圖或列表計(jì)算:從中先摸出一球,不放回,再摸出一球;這兩只球顏色不同的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+2(m+l)x﹣m+1.以下四個(gè)結(jié)論:
①不論m取何值,圖象始終過點(diǎn)( ,2 );
②當(dāng)﹣3<m<0時(shí),拋物線與x軸沒有交點(diǎn):
③當(dāng)x>﹣m﹣2時(shí),y隨x的增大而增大;
④當(dāng)m=﹣ 時(shí),拋物線的頂點(diǎn)達(dá)到最高位置.
請你分別判斷四個(gè)結(jié)論的真假,并給出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家園林公司承接了哈爾濱市平房區(qū)園林綠化工程,已知乙公司單獨(dú)完成所需要的天數(shù)是甲公司單獨(dú)完成所需天數(shù)的1.5倍,如果甲公司單獨(dú)工作10天,再由乙公司單獨(dú)工作15天,這樣就可完成整個(gè)工程的三分之二.
(1)求甲、乙兩公司單獨(dú)完成這項(xiàng)工程各需多少天?
(2)上級要求該工程完成的時(shí)間不得超過30天.甲、乙兩公司合作若干天后,甲公司另有項(xiàng)目離開,剩下的工程由乙公司單獨(dú)完成,并且在規(guī)定時(shí)間內(nèi)完成,求甲、乙兩公司合作至少多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑AF平分∠BAC,交BC于點(diǎn)D.
(1)如圖1,求證:AB=AC;
(2)如圖2,延長BA到點(diǎn)E,連接ED、EC,ED交AC于點(diǎn)G,且ED=EC,求證:∠EGC=∠ECA+2∠ACB;
(3)如圖3,在(2)的條件下,當(dāng)BC是⊙O的直徑時(shí),取DC的中點(diǎn)M,連接AM并延長交圓于點(diǎn)N,且EG=5,連接CN并求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了緩解長沙市區(qū)內(nèi)一些主要路段交通擁擠的現(xiàn)狀,交警隊(duì)在一些主要路口設(shè)立了交通路況顯示牌(如圖).已知立桿AB高度是3m,從側(cè)面D點(diǎn)測得顯示牌頂端C點(diǎn)和底端B點(diǎn)的仰角分別是60°和45°.求路況顯示牌BC的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡與計(jì)算
(1)( ﹣2)0+( )﹣1+4cos30°﹣|﹣ |.
(2)先化簡,再求值: ÷( ﹣a﹣2),其中a= ﹣3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AB=DC,點(diǎn)P是AD邊上一點(diǎn),聯(lián)結(jié)PB、PC,且AB2=APPD,則圖中有對相似三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com