【題目】在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線BD上的點(diǎn)N處,折痕DF交BC于點(diǎn)F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長(zhǎng).

【答案】
(1)證明:∵四邊形ABCD是矩形,

∴∠A=∠C=90°,AB=CD,AB∥CD,

∴∠ABD=∠CDB,

由折疊的性質(zhì)可得:∠ABE=∠EBD= ∠ABD,∠CDF= ∠CDB,

∴∠ABE=∠CDF,

在△ABE和△CDF中

∴△ABE≌△CDF(ASA),

∴AE=CF,

∵四邊形ABCD是矩形,

∴AD=BC,AD∥BC,

∴DE=BF,DE∥BF,

∴四邊形BFDE為平行四邊形;

解法二:證明:∵四邊形ABCD是矩形,

∴∠A=∠C=90°,AB=CD,AB∥CD,

∴∠ABD=∠CDB,

∴∠EBD=∠FDB,

∴EB∥DF,

∵ED∥BF,

∴四邊形BFDE為平行四邊形


(2)解:∵四邊形BFDE為菱形,

∴BE=ED,∠EBD=∠FBD=∠ABE,

∵四邊形ABCD是矩形,

∴AD=BC,∠ABC=90°,

∴∠ABE=30°,

∵∠A=90°,AB=2,

∴AE= = ,BE=2AE= ,

∴BC=AD=AE+ED=AE+BE= + =2


【解析】(1)證△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根據(jù)平行四邊形判定推出即可.(2)求出∠ABE=30°,根據(jù)直角三角形性質(zhì)求出AE、BE,即可求出答案.
【考點(diǎn)精析】本題主要考查了含30度角的直角三角形和平行四邊形的判定的相關(guān)知識(shí)點(diǎn),需要掌握在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半;兩組對(duì)邊分別平行的四邊形是平行四邊形:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過(guò)點(diǎn)D和M,反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)D,與BC的交點(diǎn)為N.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)若點(diǎn)P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李與小陸從A地出發(fā),騎自行車(chē)沿同一條路行駛到B地,他們離出發(fā)地的距離S(單位:km)和行駛時(shí)間t(單位:h)之間的函數(shù)關(guān)系的圖象如圖所示,根據(jù)圖中提供的信息,有下列說(shuō)法: 1)他們都行駛了20km;
2)小陸全程共用了1.5h;
3)小李與小陸相遇后,小李的速度小于小陸的速度;
4)小李在途中停留了0.5h.
其中正確的有(

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將菱形紙片ABCD折疊,使點(diǎn)A恰好落在菱形的對(duì)稱(chēng)中心O處,折痕為EF,若菱形ABCD的邊長(zhǎng)為2cm,∠A=120°,則EF=cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=a(x﹣m)2﹣a(x﹣m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個(gè)公共點(diǎn).
(2)設(shè)該函數(shù)的圖象的頂點(diǎn)為C,與x軸交于A,B兩點(diǎn),與y軸交于D點(diǎn).
①當(dāng)△ABC的面積為1時(shí),求a的值.
②當(dāng)△ABC的面積與△ABD的面積相等時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:
問(wèn)題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)E為DC邊的中點(diǎn),連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,求證:S四邊形ABCD=SABF . (S表示面積)

問(wèn)題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個(gè)定點(diǎn)P.過(guò)點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過(guò)程中發(fā)現(xiàn),△MON的面積存在最小值,請(qǐng)問(wèn)當(dāng)直線MN在什么位置時(shí),△MON的面積最小,并說(shuō)明理由.

實(shí)際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門(mén)計(jì)劃以公路OA、OB和經(jīng)過(guò)防疫站P的一條直線MN為隔離線,建立一個(gè)面積最小的三角形隔離區(qū)△MON.若測(cè)得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25, ≈1.73)
拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)(6,3)( , )、(4、2),過(guò)點(diǎn)p的直線l與四邊形OABC一組對(duì)邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y1=﹣x2+mx+n,直線y2=kx+b,y1的對(duì)稱(chēng)軸與y2交于點(diǎn)A(﹣1,5),點(diǎn)A與y1的頂點(diǎn)B的距離是4.
(1)求y1的解析式;
(2)若y2隨著x的增大而增大,且y1與y2都經(jīng)過(guò)x軸上的同一點(diǎn),求y2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半圓O的直徑AC=2 ,點(diǎn)B為半圓的中點(diǎn),點(diǎn)D在弦AB上,連結(jié)CD,作BF⊥CD于點(diǎn)E,交AC于點(diǎn)F,連結(jié)DF,當(dāng)△BCE和△DEF相似時(shí),BD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,DA∥BC,tan∠DBA= ,若CD=2 ,則線段BC的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案