【題目】如圖,已知AB為⊙O的直徑,AD,BD是⊙O的弦,BC是⊙O的切線,切點(diǎn)為B,OC∥AD,BA,CD的延長(zhǎng)線相交于點(diǎn)E.
(1)求證:DC是⊙O的切線;
(2)若⊙O半徑為4,∠OCE=30°,求△OCE的面積.
【答案】(1)詳見(jiàn)解析;(2)16.
【解析】
(1)首先連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對(duì)應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;
(2)設(shè)⊙O的半徑為R,則OE=R+1,在Rt△ODE中,利用勾股定理列出方程,求解即可.
(1)證明:連接DO,如圖,
∵AD∥OC,
∴∠DAO=∠COB,∠ADO=∠COD,
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠COD=∠COB.
在△COD和△COB中
,
∴△COD≌△COB(SAS),
∴∠CDO=∠CBO.
∵BC是⊙O的切線,
∴∠CBO=90°,
∴∠CDO=90°,
∴OD⊥CE,
又∵點(diǎn)D在⊙O上,
∴CD是⊙O的切線;
(2)解:由(1)可知∠OCB=∠OCD=30°,
∴∠DCB=60°,
又BC⊥BE,
∴∠E=30°,
在Rt△ODE中,∵tan∠E=,
∴DE==4,
同理DC=OD=4,
∴S△OCE=ODCE=×4×8=16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的頂點(diǎn)為A(﹣3,3),且與y軸交于點(diǎn)B(0,5),若平移該拋物線,使其頂點(diǎn)A沿y=﹣x由(﹣3,3)移動(dòng)到(2,﹣2),此時(shí)拋物線與y軸交于點(diǎn)B′,則BB′的長(zhǎng)度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以△ABC的三邊在BC同側(cè)分別作三個(gè)等邊三角形△ABD,△BCE ,△ACF,試回答下列問(wèn)題:
(1)四邊形ADEF是什么四邊形?請(qǐng)證明:
(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形ADEF是矩形?
(3)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形ADEF是菱形?
(4)當(dāng)△ABC滿(mǎn)足什么條件時(shí),能否構(gòu)成正方形?
(5)當(dāng)△ABC滿(mǎn)足什么條件時(shí),無(wú)法構(gòu)成四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)至矩形AB′C′D′位置,此時(shí)AC′的中點(diǎn)恰好與D點(diǎn)重合,AB′交CD于點(diǎn)E.若AB=6,則△AEC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程ax2+bx=0 (a≠0)的一個(gè)根是x=2018,,則方程a(x+2)2+bx+2b=0的根是___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC 中,AB=AC,點(diǎn) O 是△ABC 的外心,∠BOC=60°,BC=2,則 S△ABC=_
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A,B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=x﹣2經(jīng)過(guò)A,C兩點(diǎn),拋物線的頂點(diǎn)為D.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)在直線AC上方的拋物線上存在一點(diǎn)P,使△PAC的面積最大,請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo)及△PAC面積的最大值;
(3)在y軸上是否存在一點(diǎn)G,使得GD+GB的值最小?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在南部沿海某氣象站A測(cè)得一熱帶風(fēng)暴從A的南偏東30°的方向迎著氣象站襲來(lái),已知該風(fēng)暴速度為每小時(shí)20千米,風(fēng)暴周?chē)?/span>50千米范圍內(nèi)將受到影響,若該風(fēng)暴不改變速度與方向,問(wèn)氣象站正南方60千米處的沿海城市B是否會(huì)受這次風(fēng)暴的影響?若不受影響,請(qǐng)說(shuō)明理由;若受影響,請(qǐng)求出受影響的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com