【題目】如圖,AB是⊙O的直徑,點(diǎn)D是上一點(diǎn),且∠BDE=∠CBE,BD與AE交于點(diǎn)F.

(1)求證:BC是⊙O的切線。
(2)若BD平分∠ABE,求證:DE2=DFDB。
(3)在(2)的條件下,延長(zhǎng)ED,BA交于點(diǎn)P,若PA=AO,DE=2,求PD的長(zhǎng)和⊙O的半徑。

【答案】
(1)

證明:∵AB是⊙O的直徑,

∴∠AEB=90°,

∴∠EAB+∠EBA=90°,

∵∠EDB=∠EAB,∠BDE=∠CBE,

∴∠EAB=∠CBE,

∴∠ABE+∠CBE=90°,

∴CB⊥AB,

∵AB是⊙O的直徑,

∴BC是⊙O的切線。


(2)

證明:∵BD平分∠ABE,

∴∠ABD=∠DBE,=,

∴∠DEA=∠DBE,

∵∠EDB=∠BDE,

∴△DEF∽△DBE,

=,

∴DE2=DFDB。


(3)

解:連接DA、DO,

∵OD=OB,

∴∠ODB=∠OBD,

∵∠EBD=∠OBD,

∴∠EBD=∠ODB,

∴OD∥BE,

=,

∵PA=AO,

∴PA=AO=OB,

=

=,

=

∵DE=2,

∴PD=4,

∵∠PDA+∠ADE=180°,∠ABE+∠ADE=180°,

∴∠PDA=∠ABE,

∵OD∥BE,

∴∠AOD=∠ABE,

∴∠PDA=∠AOD,

∵∠P=∠P,

∴△PDA∽△POD,

=,

設(shè)OA=x,

∴PA=x,PO=2x,

=,

∴2x2=16,x=2,

∴OA=2


【解析】(1)根據(jù)圓周角定理即可得出∠EAB+∠EBA=90°,再由已知得出∠ABE+∠CBE=90°,則CB⊥AB,從而證得BC是⊙O的切線;
(2)通過(guò)證得△DEF∽△DBE,得出相似三角形的對(duì)應(yīng)邊成比例即可證得結(jié)論.
(3)連接DA、DO,先證得OD∥BE,得出= , 然后根據(jù)已知條件得出=== , 求得PD=4,通過(guò)證得△PDA∽△POD,得出= , 設(shè)OA=x,則PA=x,PO=2x,得出= , 解得OA=2
此題考查了圓的綜合應(yīng)用,涉及知識(shí)點(diǎn)有圓周角定理,切線的證明,相似三角形對(duì)應(yīng)邊成比例等。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直角坐標(biāo)系中有一矩形OABC , 其中 O是坐標(biāo)原點(diǎn),點(diǎn)A , C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(3,4),直線 AB于點(diǎn)D , 點(diǎn)P是直線 位于第一象限上的一點(diǎn),連接PA , 以PA為半徑作⊙P ,

(1)連接AC , 當(dāng)點(diǎn)P落在AC上時(shí), 求PA的長(zhǎng);
(2)當(dāng)⊙P經(jīng)過(guò)點(diǎn)O時(shí),求證:△PAD是等腰三角形;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為m
在點(diǎn)P移動(dòng)的過(guò)程中,當(dāng)⊙P與矩形OABC某一邊的交點(diǎn)恰為該邊的中點(diǎn)時(shí),求所有滿足要求的m值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)數(shù)tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相鄰兩個(gè)3之間依次多一個(gè)1),其中無(wú)理數(shù)的個(gè)數(shù)是(  )
A.4
B.2
C.1
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣2x+4與坐標(biāo)軸分別交于C、B兩點(diǎn),過(guò)點(diǎn)C作CD⊥x軸,點(diǎn)P是x軸下方直線CD上的一點(diǎn),且△OCP與△OBC相似,求過(guò)點(diǎn)P的雙曲線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),對(duì)稱軸為直線x=1,與y軸的交點(diǎn)B在(0,2)和(0,3)之間(包括這兩點(diǎn)),下列結(jié)論:
①當(dāng)x>3時(shí),y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;
其中正確的結(jié)論是( 。

A.①③④
B.①②③
C.①②④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一漁船由西往東航行,在A點(diǎn)測(cè)得海島C位于北偏東60°的方向,前進(jìn)40海里到達(dá)B點(diǎn),此時(shí),測(cè)得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD是(  )

A.20海里
B.40海里
C.20海里
D.40海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,CD是AB邊上的中線,F(xiàn)是CD的中點(diǎn),過(guò)點(diǎn)C作AB的平行線交BF的延長(zhǎng)線于點(diǎn)E,連接AE.

(1)求證:EC=DA;
(2)若AC⊥CB,試判斷四邊形AECD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,二次函數(shù)y= x2﹣2x+1的圖象與一次函數(shù)y=kx+b(k≠0)的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B在第一象限內(nèi),點(diǎn)C是二次函數(shù)圖象的頂點(diǎn),點(diǎn)M是一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點(diǎn),過(guò)點(diǎn)B作軸的垂線,垂足為N,且SAMO:S四邊形AONB=1:48.

(1)求直線AB和直線BC的解析式;
(2)點(diǎn)P是線段AB上一點(diǎn),點(diǎn)D是線段BC上一點(diǎn),PD∥x軸,射線PD與拋物線交于點(diǎn)G,過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,PF⊥BC于點(diǎn)F.當(dāng)PF與PE的乘積最大時(shí),在線段AB上找一點(diǎn)H(不與點(diǎn)A,點(diǎn)B重合),使GH+ BH的值最小,求點(diǎn)H的坐標(biāo)和GH+ BH的最小值;
(3)如圖2,直線AB上有一點(diǎn)K(3,4),將二次函數(shù)y= x2﹣2x+1沿直線BC平移,平移的距離是t(t≥0),平移后拋物線上點(diǎn)A,點(diǎn)C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,點(diǎn)C′;當(dāng)△A′C′K′是直角三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣6x+(2m+1)=0有實(shí)數(shù)根.
(1)求m的取值范圍;
(2)如果方程的兩個(gè)實(shí)數(shù)根為x1 , x2 , 且2x1x2+x1+x2≥20,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案