如圖1,已知拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C(0,2),此拋物線的對稱軸為直線x=2,點(diǎn)A的坐標(biāo)為(1,0).
(1)求B點(diǎn)坐標(biāo)以及△ABC的面積;
(2)求拋物線的解析式;
(3)過點(diǎn)C作x軸的平行線交此拋物線的對稱軸于點(diǎn)D,你能判斷四邊形ABDC是什么四邊形嗎?并證明你的結(jié)論;
(4)若一個動點(diǎn)P自O(shè)C的中點(diǎn)M出發(fā),先到達(dá)x軸上的某點(diǎn)(設(shè)為點(diǎn)E),再到達(dá)拋物線的對稱軸上某點(diǎn)(設(shè)為點(diǎn)F),最后運(yùn)動到點(diǎn)C,求使點(diǎn)P運(yùn)動的總路徑(ME+EF+FC)最短的點(diǎn)E、F的坐標(biāo),并求出這個最短總路徑的長.

解:(1)B(3,0),S=2.

(2)設(shè)拋物線的解析式為y=a(x-1)(x-3),
則有2=a(0-1)(0-3),a=
∴y=x2-x+2.

(3)平行四邊形(理由:AB∥CD,AB=CD=2)

(4)做C點(diǎn)關(guān)于直線x=2的對稱點(diǎn)C′,做M點(diǎn)關(guān)于x軸的對稱點(diǎn)M′,連接C′M′.
則E、F分別為直線C′M′與x軸和拋物線對稱軸的交點(diǎn).
則有C′(4,2),M′(0,-1);最短長度=C'M'=5,
設(shè)直線C′M′的解析式為y=kx-1,
有:2k-1=2,k=
∴y=x-1
∴E(,0),F(xiàn)(2,).
分析:(1)已知了拋物線的對稱軸x=2,點(diǎn)A的坐標(biāo)為(1,0)因此點(diǎn)B(3,0).AB=2,已知了OC=2,則S△ABC=AB•OC=2.
(2)已知了A、B、C三點(diǎn)的坐標(biāo),可用待定系數(shù)法求出拋物線的解析式.
(3)是平行四邊形,由于CD∥AB,證AB=CD即可.
(4)本題可根據(jù)兩點(diǎn)之間線段最短和軸對稱的性質(zhì)來求解.
可做C點(diǎn)關(guān)于直線x=2的對稱點(diǎn)C′,做M點(diǎn)關(guān)于x軸的對稱點(diǎn)M′,連接C′M′.那么E、F就是直線C′M′與x軸和拋物線對稱軸的交點(diǎn),可先求出直線C′M′的解析式,進(jìn)而可求出E、F的坐標(biāo).
點(diǎn)評:本題考查了拋物線解析式的確定、平行四邊形的性質(zhì)等知識點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C(0,2),此拋物線的對稱軸為直線x=2,點(diǎn)A的坐標(biāo)為(1,0).
(1)求B點(diǎn)坐標(biāo)以及△ABC的面積;
(2)求拋物線的解析式;
(3)過點(diǎn)C作x軸的平行線交此拋物線的對稱軸于點(diǎn)D,你能判斷四邊形ABDC是什么四邊形嗎?并證明你的結(jié)論;
(4)若一個動點(diǎn)P自O(shè)C的中點(diǎn)M出發(fā),先到達(dá)x軸上的某點(diǎn)(設(shè)為點(diǎn)E),再到達(dá)拋物線的對稱軸上某點(diǎn)(設(shè)為點(diǎn)F),最后運(yùn)動到點(diǎn)C,求使點(diǎn)P運(yùn)動的總路徑(ME+EF+FC)最短的點(diǎn)E、F的坐標(biāo),并求出這個最短總路徑的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖12,已知拋物線軸于AB兩點(diǎn),交軸于點(diǎn)C,拋物線的對稱軸交軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(,0).

(1)求拋物線的對稱軸及點(diǎn)A的坐標(biāo);

(2)在平面直角坐標(biāo)系中是否存在點(diǎn)P,與A、B、C三點(diǎn)構(gòu)成一個平行四邊形?若存在,請寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)連結(jié)CA與拋物線的對稱軸交于點(diǎn)D,在拋物線上是否存在點(diǎn)M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年4月中考數(shù)學(xué)模擬試卷(8)(解析版) 題型:解答題

如圖1,已知拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C(0,2),此拋物線的對稱軸為直線x=2,點(diǎn)A的坐標(biāo)為(1,0).
(1)求B點(diǎn)坐標(biāo)以及△ABC的面積;
(2)求拋物線的解析式;
(3)過點(diǎn)C作x軸的平行線交此拋物線的對稱軸于點(diǎn)D,你能判斷四邊形ABDC是什么四邊形嗎?并證明你的結(jié)論;
(4)若一個動點(diǎn)P自O(shè)C的中點(diǎn)M出發(fā),先到達(dá)x軸上的某點(diǎn)(設(shè)為點(diǎn)E),再到達(dá)拋物線的對稱軸上某點(diǎn)(設(shè)為點(diǎn)F),最后運(yùn)動到點(diǎn)C,求使點(diǎn)P運(yùn)動的總路徑(ME+EF+FC)最短的點(diǎn)E、F的坐標(biāo),并求出這個最短總路徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年5月廣東省深圳市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

如圖1,已知拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C(0,2),此拋物線的對稱軸為直線x=2,點(diǎn)A的坐標(biāo)為(1,0).
(1)求B點(diǎn)坐標(biāo)以及△ABC的面積;
(2)求拋物線的解析式;
(3)過點(diǎn)C作x軸的平行線交此拋物線的對稱軸于點(diǎn)D,你能判斷四邊形ABDC是什么四邊形嗎?并證明你的結(jié)論;
(4)若一個動點(diǎn)P自O(shè)C的中點(diǎn)M出發(fā),先到達(dá)x軸上的某點(diǎn)(設(shè)為點(diǎn)E),再到達(dá)拋物線的對稱軸上某點(diǎn)(設(shè)為點(diǎn)F),最后運(yùn)動到點(diǎn)C,求使點(diǎn)P運(yùn)動的總路徑(ME+EF+FC)最短的點(diǎn)E、F的坐標(biāo),并求出這個最短總路徑的長.

查看答案和解析>>

同步練習(xí)冊答案