【題目】如圖,△ABC是O的一個內(nèi)接三角形,∠B=60°,AC=6,圖中陰影部分面積記為S,則S的最小值(  )

A. 8π﹣9 B. 8π﹣6 C. 8π﹣3 D. 8π﹣2

【答案】B

【解析】

連接OA、OC,作OE⊥ACE.由S=S弓形ABC-SACB,推出當(dāng)△ABC面積最大時,S陰的面積最小,因為當(dāng)點BEO的延長線上時,△ABC的面積最大,由此即可解決問題;

連接OA、OC,作OE⊥ACE.

由題意∠AOC=2∠B=120°,

∵OE⊥AC,OA=OC,
∴∠AOE=∠COE=60°,AE=EC=3,

∵S=S弓形ABC-SACB,
∴當(dāng)△ABC面積最大時,S陰的面積最小,
∵當(dāng)點BEO的延長線上時,△ABC的面積最大,
∴S的最小值=S扇形OAC+SAOC-SABC

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠ACB=30°

(1)如圖1,當(dāng)ABAC=2,求BC的值;

(2)如圖2,當(dāng)ABAC,點PABC內(nèi)一點,且PA=2,PB,PC=3,求∠APC的度數(shù);

(3)如圖3,當(dāng)AC=4,ABCBCA),點PABC內(nèi)一動點,則PA+PB+PC的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,AB=AC.D 是 BC 上一點,且 AD=BD.將△ABD 繞點 A 逆時針旋轉(zhuǎn)得到△ACE.

(1)求證:AE∥BC;

(2)連結(jié) DE,判斷四邊形 ABDE 的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某部門為了解本市2018年推薦生測試運動與健康、審美與表現(xiàn)兩科的等級情況,從推薦生中隨機(jī)抽取了400名學(xué)生的這兩科等級成績,并將得到的數(shù)據(jù)繪制成了如圖統(tǒng)計圖.

(1)在抽取的400名學(xué)生中,運動與健康成績?yōu)?/span>A等級的人數(shù)是   

(2)在抽取的400名學(xué)生中,審美與表現(xiàn)成績?yōu)?/span>B等級的人數(shù)是   ;

(3)若2018年該市共有推薦生10000名,估計運動與健康成績?yōu)?/span>C、D等級的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為5的菱形OABC中,sin∠AOC=,O為坐標(biāo)原點,A點在x軸的正半軸上,B,C兩點都在第一象限.點P以每秒1個單位的速度沿O→A→B→C→O運動一周,設(shè)運動時間為t(秒).請解答下列問題:

(1)當(dāng)CP⊥OA時,求t的值;

(2)當(dāng)t<10時,求點P的坐標(biāo)(結(jié)果用含t的代數(shù)式表示);

(3)以點P為圓心,以O(shè)P為半徑畫圓,當(dāng)P與菱形OABC的一邊所在直線相切時,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】物理興趣小組20位同學(xué)在實驗操作中的得分情況如下表:(Ⅰ)求這組數(shù)據(jù)的眾數(shù)、中位數(shù);(Ⅱ)求這組數(shù)據(jù)的平均數(shù);(Ⅲ)將此次操作得分按人數(shù)制成如圖所示的扇形統(tǒng)計圖.扇形①的圓心角度數(shù)是多少?

得分(分)

10

9

8

7

人數(shù)(人)

5

8

4

3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個二次函數(shù)的圖象,三位同學(xué)分別說出了它的一些特點:

甲:對稱軸為直線x=4

乙:與x軸兩個交點的橫坐標(biāo)都是整數(shù).

丙:與y軸交點的縱坐標(biāo)也是整數(shù),且以這三個點為頂點的三角形面積為3.請你寫出滿足上述全部特點的一個二次函數(shù)解析式__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點P,AP=2,BP=6,APC=30°,則CD的長為_______

查看答案和解析>>

同步練習(xí)冊答案