如圖,在平面直角坐標(biāo)系中放置一矩形ABCO,其頂點(diǎn)為A(0,1)、B(-3
3
,1)、C(-3
3
,0)、O(0,0).將此矩形沿著過E(-
3
,1)、F(-
4
3
3
,0)的直線EF向右下方翻折,B、C的對(duì)應(yīng)點(diǎn)分別為B′、C′.
(1)求折痕所在直線EF的解析式;
(2)一拋物線經(jīng)過B、E、B′三點(diǎn),求此二次函數(shù)解析式;
(3)能否在直線EF上求一點(diǎn)P,使得△PBC周長最。咳缒,求出點(diǎn)P的坐標(biāo);若不能,說明理由.
(1)由于折痕所在直線EF過E(-
3
,1)、F(-
4
3
3
,0),則有:
∴設(shè)直線EF的解析式為y=kx+b,
1=-
3
k+b
0=-
4
3
3
k+b
;
解得k=
3
,b=4,
所以直線EF的解析式為:y=
3
x+4.

(2)設(shè)矩形沿直線EF向右下方翻折后,B、C的對(duì)應(yīng)點(diǎn)為B′(x1,y1),C′(x2,y2);
過B′作B′A′⊥AE交AE所在直線于A′點(diǎn);
∵B′E=BE=2
3
,∠B′EF=∠BEF=60°,
∴∠B′EA′=60°,
∴A′E=
3
,B′A′=3;
∴A與A′重合,B′在y軸上;
∴x1=0,y1=-2,
即B′(0,-2);【此時(shí)需說明B′(x1,y1)在y軸上】.
設(shè)二次函數(shù)解析式為:y=ax2+bx+c,拋物線過B(-3
3
,1)、E(-
3
,1)、B′(0,-2);
得到
c=-2
3a-
3
b+c=1
27a-3
3
b+c=1

解得
a=-
1
3
b=-
4
3
3
c=-2

∴該二次函數(shù)解析式y(tǒng)=-
1
3
x2-
4
3
3
x-2;

(3)能,可以在直線EF上找到P點(diǎn);
連接B′C交EF于P點(diǎn),再連接BP;
由于B′P=BP,此時(shí)點(diǎn)P與C、B′在一條直線上,故BP+PC=B′P+PC的和最。
由于BC為定長,所以滿足△PBC周長最小;
設(shè)直線B′C的解析式為:y=kx+b,則有:
-2=b
0=-3
3
k+b
,
解得
k=-
2
3
9
b=-2

∴直線B′C的解析式為:y=-
2
3
9
x-2;
又∵P為直線B′C和直線EF的交點(diǎn),
y=-
2
3
9
x-2
y=
3
x+4
,
解得
x=-
18
11
3
y=-
10
11
;
∴點(diǎn)P的坐標(biāo)為(-
18
3
11
,-
10
11
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)的圖象與x軸相交于點(diǎn)A(-3,0)、B(-1,0),與y軸相交于點(diǎn)C(0,3),點(diǎn)P是該圖象上的動(dòng)點(diǎn);一次函數(shù)y=kx-4k(k≠0)的圖象過點(diǎn)P交x軸于點(diǎn)Q.
(1)求該二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P的坐標(biāo)為(-4,m)時(shí),求證:∠OPC=∠AQC;
(3)點(diǎn)M,N分別在線段AQ、CQ上,點(diǎn)M以每秒3個(gè)單位長度的速度從點(diǎn)A向點(diǎn)Q運(yùn)動(dòng),同時(shí),點(diǎn)N以每秒1個(gè)單位長度的速度從點(diǎn)C向點(diǎn)Q運(yùn)動(dòng),當(dāng)點(diǎn)M,N中有一點(diǎn)到達(dá)Q點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①連接AN,當(dāng)△AMN的面積最大時(shí),求t的值;
②直線PQ能否垂直平分線段MN?若能,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△OAB中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(4,2).
(1)畫出△OAB關(guān)于點(diǎn)O成中心對(duì)稱的△OA1B1,并寫出點(diǎn)B1的坐標(biāo);
(2)求出以點(diǎn)B1為頂點(diǎn),并經(jīng)過點(diǎn)B的二次函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),對(duì)稱軸與拋物線相交于點(diǎn)P、與直線BC相交于點(diǎn)M,連接PB.
(1)求該拋物線的解析式;
(2)拋物線上是否存在一點(diǎn)Q,使△QMB與△PMB的面積相等?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說明理由;
(3)在第一象限、對(duì)稱軸右側(cè)的拋物線上是否存在一點(diǎn)R,使△RPM與△RMB的面積相等?若存在,直接寫出點(diǎn)R的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=nx2+4nx+m與x軸交于A(-1,0),B(x2,0)兩點(diǎn),與y軸正半軸交于C,拋物線的頂點(diǎn)為D,且S△ABD=1,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在銳角△ABC中,BC=9,AH⊥BC于點(diǎn)H,且AH=6,點(diǎn)D為AB邊上的任意一點(diǎn),過點(diǎn)D作DEBC,交AC于點(diǎn)E.設(shè)△ADE的高AF為x(0<x<6),以DE為折線將△ADE翻折,所得的△A'DE與梯形DBCE重疊部分的面積記為y(點(diǎn)A關(guān)于DE的對(duì)稱點(diǎn)A'落在AH所在的直線上).
(1)分別求出當(dāng)0<x≤3與3<x<6時(shí),y與x的函數(shù)關(guān)系式;
(2)當(dāng)x取何值時(shí),y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,東梅中學(xué)要在教學(xué)樓后面的空地上用40米長的竹籬笆圍出一個(gè)矩形地塊作生物園,矩形的一邊用教學(xué)樓的外墻,其余三邊用竹籬笆.設(shè)矩形的寬為x,面積為y.
(1)求y與x的函數(shù)關(guān)系式,并求自變量x的取值范圍;
(2)生物園的面積能否達(dá)到210平方米?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知點(diǎn)A(-2,4)和點(diǎn)B(1,0)都在拋物線y=mx2+2mx+n上.
(1)求m、n;
(2)向右平移上述拋物線,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,若四邊形AA′B′B為菱形,求平移后拋物線的表達(dá)式;
(3)記平移后拋物線的對(duì)稱軸與直線AB′的交點(diǎn)為點(diǎn)C,試在x軸上找點(diǎn)D,使得以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的頂點(diǎn)為(1,-3),且與y軸交于點(diǎn)(0,1),則拋物線的解析式為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案