【題目】如圖,在直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn)、,直線過(guò)點(diǎn)且分別交軸負(fù)半軸、直線于點(diǎn)、,.
(1)求直線的解析式及點(diǎn)的坐標(biāo);
(2)若點(diǎn)為直線上一點(diǎn),過(guò)作軸,交直線于,且點(diǎn)的橫坐標(biāo)為,若,求的值.
【答案】(1)直線l2的解析式為:y=2x1,E(1,1);(2)n=或n=.
【解析】
(1)首先易得A、B的坐標(biāo),進(jìn)而求得D的坐標(biāo),然后根據(jù)待定系數(shù)法求得直線l2的解析式,聯(lián)立解析式,解方程組即可求得E的坐標(biāo);
(2)根據(jù)題意列出|n+22n+1|=1,解方程即可求得.
解:(1)由直線l1:y=x+2易得A(2,0),B(0,2),
∴OB=2,
∴OD=OB=1,即D(0,1),
∵直線l2:y=kx+b過(guò)點(diǎn)C(,2),D(0,1),
∴,解得:,
∴直線l2的解析式為:y=2x1,
解方程組 得:,
∴E(1,1);
(2)∵點(diǎn)P為直線l1上一點(diǎn),點(diǎn)P的橫坐標(biāo)為n,
∴P(n,n+2),
∵過(guò)P作PQ∥y軸,交直線l2于Q,
∴Q(n,2n1),
∵BD=3,PQ=BD,
∴PQ=1,
∴|n+22n+1|=1,
解得:n=或n=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)的圖像與軸、軸分別交于點(diǎn)、,以為邊在第二象限內(nèi)作等邊.
(1)求點(diǎn)的坐標(biāo);
(2)在第二象限內(nèi)有一點(diǎn),使,求點(diǎn)的坐標(biāo);
(3)將沿著直線翻折,點(diǎn)落在點(diǎn)處;再將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)15°,點(diǎn)落在點(diǎn)處,過(guò)點(diǎn)作軸于.求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解下列方程時(shí),配方有錯(cuò)誤的是( )
A.x2﹣2x﹣99=0化為(x﹣1)2=100
B.x2+8x+9=0化為(x+4)2=25
C.2t2﹣7t﹣4=0化為(t﹣)2=
D.3x2﹣4x﹣2=0化為(x﹣)2=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)粒子在軸上及第一象限內(nèi)運(yùn)動(dòng),第1次從運(yùn)動(dòng)到,第2次從運(yùn)動(dòng)到,第3次從運(yùn)動(dòng)到,它接著按圖中箭頭所示的方向運(yùn)動(dòng).則第2019次時(shí)運(yùn)動(dòng)到達(dá)的點(diǎn)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)分別從、兩地同時(shí)相向勻速行駛,當(dāng)乙車(chē)到達(dá)地后,繼續(xù)保持原速向遠(yuǎn)離的方向行駛,而甲車(chē)到達(dá)地后,休息半小時(shí)后立即掉頭,并以原速的倍與乙車(chē)同向行駛,經(jīng)過(guò)一段時(shí)間后,兩車(chē)先后到達(dá)距地的地并停下來(lái),設(shè)兩車(chē)行駛的時(shí)間為,兩車(chē)之間的距離為,與的函數(shù)關(guān)系如圖,則當(dāng)甲車(chē)從地掉頭追到乙車(chē)時(shí),乙車(chē)距離地__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一邊長(zhǎng)為4正方形放在平面直角坐標(biāo)系中,其中為原點(diǎn),點(diǎn)、分別在軸、軸上,為射線上任意一點(diǎn)
(1)如圖1,若點(diǎn)坐標(biāo)為,連接交于點(diǎn),則的面積為__________;
(2)如圖2,將沿翻折得,若點(diǎn)在直線圖象上,求出點(diǎn)坐標(biāo);
(3)如圖3,將沿翻折得,和射線交于點(diǎn),連接,若,平面內(nèi)是否存在點(diǎn),使得是以為直角邊的等腰直角三角形,若存在,請(qǐng)求出所有點(diǎn)坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,⊙O為內(nèi)切圓,E為切點(diǎn).
(1)求證:AO2=AEAD;
(2)若AO=4cm,AD=5cm,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)F、C是⊙O上兩點(diǎn),且點(diǎn)C為弧BF的中點(diǎn),連接AC、AF,過(guò)點(diǎn)C作CD⊥AF交AF延長(zhǎng)線于點(diǎn)D.
(1)求證:CD是⊙O的切線;
(2)判斷線段AB、AF與AD之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋里裝有紅、黑、綠三種顏色的乒乓球(除顏色外其余都相同),其中紅球有個(gè),黑球有個(gè),綠球有個(gè),第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,則兩次摸到的都是紅球的概率為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com