精英家教網 > 初中數學 > 題目詳情
如圖,已知二次函數y=ax2+bx+c的圖象經過點A(﹣4,0),B(﹣1,3),C(﹣3,3)

(1)求此二次函數的解析式;
(2)設此二次函數的對稱軸為直線l,該圖象上的點P(m,n)在第三象限,其關于直線l的對稱點為M,點M關于y軸的對稱點為N,若四邊形OAPN的面積為20,求m、n的值.
解:(1)將A(﹣4,0),B(﹣1,3),C(﹣3,3)代入y=ax2+bx+c得:
,解得:a=﹣1,b=﹣4,c=0。
∴此二次函數的解析式為y=﹣4x2﹣4x。
(2)由題可知,M、N點坐標分別為(﹣4﹣m,n),(m+4,n).
∵四邊形OAPF的面積=(OA+FP)÷2×|n|=20,即4|n|=20,解得|n|=5。
∵點P(m,n)在第三象限,∴n=﹣5。
∴﹣m2﹣4m+5=0,解得m=﹣5或m=1(舍去)。
∴所求m、n的值分別為﹣5,﹣5.

試題分析:(1)因為拋物線y=﹣x2+bx+c過點A(﹣4,0),B(﹣1,3),C(﹣3,3)代入求出其解析式即可。
(2)由題可知,M、N點坐標分別為(﹣4﹣m,n),(m+4,n),根據四邊形OAPF的面積為20,從而求出其m,n的值。 
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx﹣4經過A(﹣8,0),B(2,0)兩點,直線x=﹣4交x軸于點C,交拋物線于點D.

(1)求該拋物線的解析式;
(2)點P在拋物線上,點E在直線x=﹣4上,若以A,O,E,P為頂點的四邊形是平行四邊形,求點P的坐標;
(3)若B,D,C三點到同一條直線的距離分別是d1,d2,d3,問是否存在直線l,使?若存在,請直接寫出d3的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c交y軸于點C(0,4),對稱軸x=2與x軸交于點D,頂點為M,且DM=OC+OD.

(1)求該拋物線的解析式;
(2)設點P(x,y)是第一象限內該拋物線上的一個動點,△PCD的面積為S,求S關于x的函數關系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,若經過點P的直線PE與y軸交于點E,是否存在以O、P、E為頂點的三角形與△OPD全等?若存在,請求出直線PE的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線經過點A(,0)和點B(1,),與x軸的另一個交點為C.
(1)求拋物線的函數表達式;
(2)點D在對稱軸的右側,x軸上方的拋物線上,且∠BDA=∠DAC,求點D的坐標;
(3)在(2)的條件下,連接BD,交拋物線對稱軸于點E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點F是OB的中點,點M是直線BD的一個動點,且點M與點B不重合,當∠BMF=∠MFO時,請直接寫出線段BM的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知關于x的二次函數y=x2﹣2mx+m2+m的圖象與關于x的函數y=kx+1的圖象交于兩點A(x1,y1)、B(x2,y2);(x1<x2
(1)當k=1,m=0,1時,求AB的長;
(2)當k=1,m為任何值時,猜想AB的長是否不變?并證明你的猜想.
(3)當m=0,無論k為何值時,猜想△AOB的形狀.證明你的猜想.
(平面內兩點間的距離公式).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

(2013年四川綿陽4分)二次函數y=ax2+bx+c的圖象如圖所示,給出下列結論:
①2a+b>0;②b>a>c;③若﹣1<m<n<1,則m+n<;④3|a|+|c|<2|b|.
其中正確的結論是   (寫出你認為正確的所有結論序號).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法錯誤的是
A.圖象關于直線x=1對稱
B.函數ax2+bx+c(a≠0)的最小值是﹣4
C.﹣1和3是方程ax2+bx+c(a≠0)的兩個根
D.當x<1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

拋物線y=ax2+bx+c(a≠0)經過點(1,2)和(﹣1,﹣6)兩點,則a+c=
   

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某企業(yè)為手機產業(yè)基地提供手機配件,受人民幣走高的影響,從去年1至9月,該配件的原材料價格一路攀升,每件配件的原材料價格y1(元)與月份x(1≤x≤9,且x取整數)之間的函數關系如下表:
月份x
1
2
3
4
5
6
7
8
9
價格y1(元/件)
56
58
60
62
64
66
68
70
72
隨著國家調控措施的出臺,原材料價格的漲勢趨緩,10至12月每件配件的原材料價格y2(元)與月份x(10≤x≤12,且x取整數)之間存在如圖所示的變化趨勢:

(1)請觀察題中的表格,用所學過的一次函數、反比例函數或二次函數的有關知識,直接寫出y1與x之間的函數關系式,根據如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數關系式;
(2)若去年該配件每件的售價為100元,生產每件配件的人力成本為5元,其它成本3元,該配件在1至9月的銷售量p1(萬件)與月份x滿足函數關系式(1≤x≤9,且x取整數),10至12月的銷售量p2(萬件)與月份x滿足函數關系式(10≤x≤12,且x取整數)。求去年哪個月銷售該配件的利潤最大,并求出這個最大利潤;
(3)今年1月,每件配件的原材料價格比去年12月上漲6元,人力成本比去年增加20%,其它成本沒有變化,該企業(yè)將每件配件的售價在去年的基礎上提高a%,與此同時1月份銷售量在去年12月的基礎上減少8a%,這樣,在保證1月份上萬件配件銷量的前提下,完成了利潤17萬元的任務,請你計算出a的值。

查看答案和解析>>

同步練習冊答案