【題目】青山化工廠與A、B兩地有公路、鐵路相連,這家工廠從A地購買一批每噸1000元的原料經(jīng)鐵路120km和公路10km運回工廠,制成每噸8000元的產(chǎn)品經(jīng)鐵路110km和公路20km銷售到B地.已知鐵路的運價為1.2元/(噸·千米),公路的運價為1.5元/(噸·千米),且這兩次運輸共支出鐵路運費124800元,公路運費19500元.
(1)設(shè)原料重x噸,產(chǎn)品重y噸,根據(jù)題中數(shù)量關(guān)系填寫下表
原料x噸 | 產(chǎn)品y噸 | 合計(元) | |
鐵路運費 | 124800 | ||
公路運費 | 19500 |
根據(jù)上表列方程組求原料和產(chǎn)品的重量.
(2)這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?
【答案】(1)填表:72000,52800,7500,12000;購買了原料噸,制成產(chǎn)品噸;(2)2555700元
【解析】
(1)設(shè)該工廠從A地購買了噸原料,制成運往B地的產(chǎn)品噸,由這兩次運輸共支出公路運輸費19500元、鐵路運輸費124800元,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;
(2)由總價=單價×數(shù)量結(jié)合多的費用=銷售總額-(原料費+運輸費),即可求出結(jié)論.
(1)設(shè)該工廠從A地購買了噸原料,制成運往B地的產(chǎn)品噸,
依題意,得:,
解得:.
填表如下:
原料x噸 | 產(chǎn)品y噸 | 合計(元) | |
鐵路運費 | 72000 | 52800 | 124800 |
公路運費 | 7500 | 12000 | 19500 |
答:該工廠從A地購買了噸原料,制成運往B地的產(chǎn)品噸;
(2)8000×400-(1000×500+19500+124800)=2555700(元).
答:這批產(chǎn)品的銷售款比原料費與運輸費的和多2555700元
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1的圖形我們把它稱為“8字形”,則∠A,∠B,∠C,∠D四個角的數(shù)量關(guān)系是 ;
(2)如圖2,若∠BCD,∠ADE的角平分線CP,DP交于點P,則∠P與∠A,∠B的數(shù)量關(guān)系為∠P= ;
(3)如圖3,CM,DN分別平分∠BCD,∠ADE,當∠A+∠B=80°時,試求∠M+∠N的度數(shù)(提醒:解決此問題可以直接利用上述結(jié)論);
(4)如圖4,如果∠MCD=∠BCD,∠NDE=∠ADE,當∠A+∠B=n°時,試求∠M+∠N的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB于點E.
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一次函數(shù)y=-2x+4,下列結(jié)論錯誤的是( )
A. 函數(shù)的圖象與x軸的交點坐標是
B. 函數(shù)值隨自變量的增大而減小
C. 函數(shù)的圖象不經(jīng)過第三象限
D. 函數(shù)的圖象向下平移4個單位長度得的圖象
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A,B兩種花草,第一次分別購進A,B兩種花草30棵和15棵,共花費675元;第二次分別購進A,B兩種花草12棵和5棵,共花費265元(兩次購進的A、B兩種花草價格均分別相同).
(1)A,B兩種花草每棵的價格分別是多少元?
(2)若購買A,B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請你設(shè)計一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,有若干個橫、縱坐標為整數(shù)的點,其順序按圖中“→”方向排列,從原點開始依次為(0,0),(1,0),(1,1),(0,1),(0,2),(1,2),(2,2),(2,1),(2,0)(3,0)…按此規(guī)律第200個點的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩位探險者到沙漠進行探險,沒有了水,需要尋找水源.為了不致于走散,他們用兩部對話機聯(lián)系,已知對話機的有效距離為15千米.早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進,上午10:00,甲、乙二人相距多遠?還能保持聯(lián)系嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com