【題目】如圖,直線分別與軸、軸交于兩點(diǎn),與直線交于點(diǎn).

1)點(diǎn)坐標(biāo)為( , ),B為( .

2)在線段上有一點(diǎn),過點(diǎn)軸的平行線交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,若四邊形是平行四邊形時(shí),求出此時(shí)的值.

3)若點(diǎn)軸正半軸上一點(diǎn),且,則在軸上是否存在一點(diǎn),使得四個(gè)點(diǎn)能構(gòu)成一個(gè)梯形若存在,求出所有符合條件的點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)點(diǎn)的坐標(biāo)是點(diǎn)的坐標(biāo)是;(2;(3)符合條件的點(diǎn)坐標(biāo)為

【解析】

1)先將點(diǎn)C坐標(biāo)代入直線l1中,求出直線l1的解析式,令x=0y=0,即可得出結(jié)論;
2)先求出直線l2的解析式,表示出點(diǎn)E,F的坐標(biāo),在判斷出OB=EF,建立方程求解,即可得出結(jié)論;
3)先求出點(diǎn)P的坐標(biāo),分兩種情況求出直線PQ,AQ的解析式,即可得出結(jié)論.

:1點(diǎn)C2)在直線l1上,
,
∴直線l1的解析式為

x=0,∴y=3,∴B03),
y=0,∴,∴x=4,∴A4,0),
故答案為:點(diǎn)的坐標(biāo)是,點(diǎn)的坐標(biāo)是.

2軸,點(diǎn)的橫坐標(biāo)為,點(diǎn)的橫坐標(biāo)也為

直線與直線交于點(diǎn)

點(diǎn)是直線的一點(diǎn),

點(diǎn)E的坐標(biāo)是,

點(diǎn)是直線上的一點(diǎn),

點(diǎn)的坐標(biāo)是

當(dāng)

3)若點(diǎn)軸正半軸上一點(diǎn),,,

.

當(dāng)時(shí)

直線AB的解析式為:

直線PQ的解析式為

點(diǎn)的坐標(biāo)是

當(dāng)時(shí)

直線BP的解析式為,

直線AQ的解析式為

點(diǎn)的坐標(biāo)是

綜上,在平面直角坐標(biāo)系中存在點(diǎn),使得四個(gè)點(diǎn)能構(gòu)成一個(gè)梯形,符合條件的點(diǎn)坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)A2,0)的兩條直線,分別交軸于BC,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.

1)求點(diǎn)B的坐標(biāo);

2)若△ABC的面積為4,求的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, ,矩形ABCD的頂點(diǎn)A、B分別在OM、ON上,當(dāng)B在邊ON上運(yùn)動(dòng)時(shí),A 隨之在邊OM上運(yùn)動(dòng),矩形ABCD的形狀保持不變,其中AB=2,BC=1,則運(yùn)動(dòng)過程中,點(diǎn)C到點(diǎn)O的最大距離為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵(lì)節(jié)約用水,某地推行階梯式水價(jià)計(jì)費(fèi)制,標(biāo)準(zhǔn)如下:每月用水不超過17立方米的按每立方米元計(jì)費(fèi),超過17立方米而未超過30立方米的部分按每立方米元計(jì)費(fèi),超過30立方米的部分按每立方米元計(jì)費(fèi),某戶居民上月用水35立方米,應(yīng)繳水費(fèi)_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每個(gè)正方形從第三象限的頂點(diǎn)開始,按順時(shí)針方向順序,依次記為A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐標(biāo)原點(diǎn)O,各邊均與x軸或y軸平行,若它們的邊長依次是2,4,6,…,則頂點(diǎn)A20的坐標(biāo)為 (  )

A. (5,5) B. (5,-5) C. (-5,5) D. (-5,-5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光明中學(xué)組織全校1000名學(xué)生進(jìn)行了校園安全知識(shí)競賽.為了解本次知識(shí)競賽的成績分布情況,從中隨機(jī)抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分),并繪制了如圖的頻數(shù)分布表和頻數(shù)分布直方圖(不完整).

分組

頻數(shù)

頻率

50.560.5

10

a

60.570.5

b

70.580.5

0.2

80.590.5

52

0.26

90.5100.5

0.37

合計(jì)

c

1

請(qǐng)根據(jù)以上提供的信息,解答下列問題:

(1)直接寫出頻數(shù)分布表中a,b,c的值,補(bǔ)全頻數(shù)分布直方圖.

(2)上述學(xué)生成績的中位數(shù)落在哪一組范圍內(nèi)?

(3)學(xué)校將對(duì)成績?cè)?0.5~100.5分之間的學(xué)生進(jìn)行獎(jiǎng)勵(lì),請(qǐng)估計(jì)全校1000名學(xué)生中約有多少名獲獎(jiǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2011貴州安順,9,3分)正方形ABCD邊長為1,E、FG、H分別為邊ABBC、CDDA上的點(diǎn),且AE=BF=CG=DH.設(shè)小正方形EFGH的面積為y,AE=x. 則y關(guān)于x的函數(shù)圖象大致是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)問題:計(jì)算等差數(shù)列5,2,﹣1,﹣4……前n項(xiàng)的和.

問題探究:為解決上面的問題,我們從最簡單的問題進(jìn)行探究.

探究一:首先我們來認(rèn)識(shí)什么是等差數(shù)列.

數(shù)學(xué)上,稱按一定順序排列的一列數(shù)為數(shù)列,其中排在第一位的數(shù)稱為第1項(xiàng),用a1表示:排在第二位的數(shù)稱為第2項(xiàng),用a2表示……排在第n位的數(shù)稱為第n項(xiàng),用an表示.一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫等差數(shù)列的公差,公差通常用字母d表示.如:數(shù)列2,46,8,….為等差數(shù)列,其中a12,公差d2

1)已知等差數(shù)列5,2,﹣1,﹣4,…則這個(gè)數(shù)列的公差d   ,第5項(xiàng)是   

2)如果一個(gè)數(shù)列a1,a2,a3,a4,…是等差數(shù)列,且公差為d,那么根據(jù)定義可得到:

a2a1d,a3a2d,a4a3d,……anan1d,所以a2a1+da3a2+da1+2d,a4a1+3d,……:由此可得an   (用a1d的代數(shù)式表示)

3)對(duì)于等差數(shù)列52,﹣1,﹣4,…,an   請(qǐng)判斷﹣2020是否是此等差數(shù)列的某一項(xiàng),若是,請(qǐng)求出是第幾項(xiàng):若不是,說明理由.

探究二:二百多年前,數(shù)學(xué)王子高斯用他獨(dú)特的方法快速計(jì)算出1+2+3+4++100的值.我們從這個(gè)算法中受到啟發(fā),用此方法計(jì)算數(shù)列1,2,3,…,n的前n項(xiàng)和: 可知

4)請(qǐng)你仿照上面的探究方式,解決下面的問題:

a1,a2a3,…,an為等差數(shù)列的前n項(xiàng),前n項(xiàng)和Sna1+a2+a3++an.證明:Snna1+

5)計(jì)算:計(jì)算等差數(shù)列5,2,﹣1,﹣4…前n項(xiàng)的和Sn(寫出計(jì)算過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備印刷一批證書,現(xiàn)有兩個(gè)印刷廠可供選擇:甲廠收費(fèi)方式:收制版費(fèi)1000元,每本印刷費(fèi)0.5元;乙廠收費(fèi)方式:不收制版費(fèi),每本收印刷費(fèi)1.5元;若該校印制證書x.

1)當(dāng)印制證書3000本時(shí),甲廠的收費(fèi)為 元,乙廠的收費(fèi)為 元;

2)請(qǐng)問印刷多少本證書時(shí),甲乙兩廠收費(fèi)相同?

3)你認(rèn)為選擇哪一家印刷廠更優(yōu)惠?

查看答案和解析>>

同步練習(xí)冊(cè)答案