【題目】解答題
(1)如圖1,已知△ABC,以AB,AC為邊分別向△ABC外作等邊△ABD和等邊△ACE,連結(jié)BE,CD,請你完成圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡),并證明:BE=CD;

(2)如圖2,利用(1)中的方法解決如下問題:在四邊形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,求BD的長.

(3)如圖3,四邊形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα= ,CD=5,AD=12,求BD的長.

【答案】
(1)

證明:如圖1,分別以點A、B為圓心,以AB為半徑畫弧,交于點D,連接AD、BD,再分別以A、C為圓心,以AC為半徑畫弧,交于點E,連接AE、CE,則△ABD、△ACE就是所求作的等邊三角形;

證明:如圖1,∵△ABD和△ACE都是等邊三角形,

∴AD=AB,AC=AE,∠DAB=∠EAC=60°,

∴∠DAC=∠BAE,

∴△DAC≌△BAE(SAS),

∴BE=CD


(2)

解:如圖2,過A作AE⊥AD,使AD=AE=3,連接DE、CE,

由勾股定理得:DE= =3

∴∠EDA=45°,

∵∠ADC=45°,

∴∠EDC=∠EDA+∠ADC=90°,

∵∠ACB=∠ABC=45°,

∴∠CAB=90°,

∴∠CAB+∠DAC=∠EAD+∠DAC,

即∠EAC=∠DAB,

∵AE=AD,AC=AB,

∴△DAB≌△EAC(SAS),

∴EC=BD,

在Rt△DCE中,EC= = = ,

∴BD=EC=


(3)

解:如圖3,作直角三角形DAE,使得∠DAE=90°,

∠EDA=∠ABC,連接EC,

容易得到△DAE∽△BAC,

,即 ,

∵∠DAE=∠BAC=90°,

∴∠DAE+∠DAC=∠BAC+∠DAC,即∠EAC=∠DAB,

∴△EAC∽△DAB,

,

在△DCE中,∠ADC=∠ACB,

∠EDA=∠ABC,

∴∠EDC=90°,

,AD=12,

∴AE=9,∠DAE=90°,

∴DE= =15,

CE= =5 ,

由△EAC∽△DAB,

BD=


【解析】(1)作圖:分別以點A、B為圓心,以AB為半徑畫弧,交于點D,連接AD、BD;再分別以A、C為圓心,以AC為半徑畫弧,交于E,連接AE、CE,則△ABD、△ACE就是所求作的等邊三角形;
利用等邊三角形的性質(zhì)證明△DAC≌△BAE可以得出結(jié)論;(2)如圖2,作輔助線后,證明△DAB≌△EAC得:EC=BD,在Rt△DCE中,利用勾股定理求EC的長,則BD=EC= ;(3)如圖3,構(gòu)建直角△DAE,根據(jù)同角的三角函數(shù)求AE和DE的長,從而可以得到EC的長,利用三角形相似可以得BD的長.
【考點精析】根據(jù)題目的已知條件,利用相似三角形的應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點C在以AB為直徑的半圓上,∠CAB的平分線AD交BC于點D,⊙O經(jīng)過A、D兩點,且圓心O在AB上.
(1)求證:BD是⊙O的切線.
(2)若 , ,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點,以O(shè)為圓心的半圓與AB邊相切于點D,與AC、BC邊分別交于點E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD=
(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一游戲棋盤和一個質(zhì)地均勻的正四面體骰子(各面依次標有1,2,3,4四個數(shù)字).游戲規(guī)則是游戲者每擲一次骰子,棋子按著地一面所示的數(shù)字前進相應(yīng)的格數(shù).例如:若棋子位于A處,游戲者所擲骰子著地一面所示數(shù)字為3,則棋子由A處前進3個方格到達B處.請用畫樹形圖法(或列表法)求擲骰子兩次后,棋子恰好由A處前進6個方格到達C處的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是等邊三角形ABC內(nèi)部一個動點,∠APB=120°,⊙O是△APB的外接圓.AP,BP的延長線分別交BC,AC于D,E.
(1)求證:CA,CB是⊙O的切線;
(2)已知AB=6,G在BC上,BG=2,當(dāng)PG取得最小值時,求PG的長及∠BGP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)2﹣(﹣4)+3

(2)﹣32÷(﹣2)3

(3)(+)×12

(4)﹣13+[(﹣4)2﹣(1﹣32)×2]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,則下列結(jié)論中不正確的是(
A.∠B=48°
B.∠AED=66°
C.∠A=84°
D.∠B+∠C=96°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對角線DB重合,點A落在點A′處,折痕為DE,則A′E的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明平時喜歡玩“QQ農(nóng)場游戲,本學(xué)期初二年級數(shù)學(xué)備課組組織了幾次數(shù)學(xué)反饋性測試,小明的數(shù)學(xué)成績?nèi)缦卤恚?/span>

月份x(月)

9

10

11

12


成績y(分)

90

80

70

60


1)以月份為x軸,成績?yōu)?/span>y軸,根據(jù)上表提供的數(shù)據(jù)在下列直角坐標系中描點;

2)觀察中所描點的位置關(guān)系,照這樣的發(fā)展趨勢,猜想yx之間的函數(shù)關(guān)系,并求出所猜想的函數(shù)表達式;

3)若小明繼續(xù)沉溺于“QQ農(nóng)場游戲,照這樣的發(fā)展趨勢,請你估計元月份的期末考試中小明的數(shù)學(xué)成績,并用一句話對小明提出一些建議.

查看答案和解析>>

同步練習(xí)冊答案