【題目】如圖,拋物線y=ax2+bx+與y軸交于點A,與x軸交于點B、C,連結AB,以AB為邊向右做平行四邊形ABDE,點E落在拋物線上,點D落在x軸上,若拋物線的對稱軸恰好經過點D,且∠ABD=60°,則平行四邊形的面積為_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于D,延長AO交⊙O于E,連接CD,CE,若CE是⊙O的切線,
(1)求證:CD是⊙O的切線;
(2)若BC=3,AB=5,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明在地面A處利用測角儀觀測氣球C的仰角為37°,然后他沿正對氣球方向前進了40m到達地面B處,此時觀測氣球的仰角為45°.求氣球的高度是多少?參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=(m-2)x2+(m+3)x+m+2的圖象過點(0,5)
(1)求m的值,并寫出二次函數(shù)的表達式;
(2)求出二次函數(shù)圖象的頂點坐標、對稱軸。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點E是BC邊上的一個動點(不與點B.C重合),連結AE,并作EF⊥AE,交CD邊于點F,連結AF.設BE=x,CF=y.
(1)求證:△ABE∽△ECF;
(2)當x為何值時,y的值為2;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次羽毛球賽中,甲運動員在離地面米的P點處發(fā)球,球的運動軌跡PAN看作一個拋物線的一部分,當球運動到最高點A時,其高度為3米,離甲運動員站立地點O的水平距離為5米,球網BC離點O的水平距離為6米,以點O為原點建立如圖所示的坐標系,乙運動員站立地點M的坐標為(m,0).
(1)求拋物線的解析式(不要求寫自變量的取值范圍);
(2)求羽毛球落地點N離球網的水平距離(即NC的長);
(3)乙原地起跳后可接球的最大高度為2.4米,若乙因為接球高度不夠而失球,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAD=90°,AB=AD,CB=CD,一個以點C為頂點的45°角繞點C旋轉,角的兩邊與BA,DA交于點M,N,與BA,DA的延長線交于點E,F,連接AC.
(1)在∠FCE旋轉的過程中,當∠FCA=∠ECA時,如圖1,求證:AE=AF;
(2)在∠FCE旋轉的過程中,當∠FCA≠∠ECA時,如圖2,如果∠B=30°,CB=2,用等式表示線段AE,AF之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)請直接寫出D點的坐標.
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把一條拋物線上橫坐標與縱坐標相等的點叫做這條拋物線的“不動點”.如圖,在平面直角坐標系xOy中,已知拋物線y=x2﹣2x,其頂點為A.
(1)試求拋物線y=x2﹣2x的“不動點”的坐標;
(2)平移拋物線y=x2﹣2x,使所得新拋物線的頂點B是該拋物線的“不動點”,其對稱軸與x軸交于點C,且四邊形OABC是梯形,求新拋物線的表達式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com