平方根概念的起源與幾何中的正方形有關(guān),如果一個正方形的面積是S,那么這個正方形的邊長是______.
設(shè)正方形的邊長是a,
則a2=S,
∵a為正數(shù),
∴a=
S
,
故答案為:
S
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)里,我們規(guī)定:a-n=
1
an
 (a≠O).無論從仿照同底數(shù)冪的除法公式來分析,還是仿照分式的約分來分析,這種規(guī)定都是合理的.正是有了這種規(guī)定,指數(shù)的范圍由非負數(shù)擴大到全體整數(shù),概念的擴充與完善使我們解決問題的路更寬了.例如a2•a-3=a2+(-3)=a-1=
1
a
.?dāng)?shù)的發(fā)展經(jīng)歷了漫長的過程,其實人們早就發(fā)現(xiàn)了非實數(shù)的數(shù).人們規(guī)定:i2=-1,這里數(shù)i類似于實數(shù)單位1,它的運算法則與實數(shù)運算法則完全類似:2i+
1
3
i=
7
3
i(注意:由于非實數(shù)與實數(shù)單位不同,因此像2+i之類的運算便無法繼續(xù)進行,2+i就是一個非實數(shù)的數(shù)),6•0.5i=3i; 2i•3i=6i2=-6;(3i)2=-9;-4的平方根為±2i;如果x2=-7,那么x=±
7
i.…數(shù)的不斷發(fā)展進一步證實,這種規(guī)定是合理的.
(1)想一想,作這樣的規(guī)定有什么好處?
(2)試用配方法求一元二次方程x2+x+1=0的非實數(shù)解:
(3)你認為,在學(xué)習(xí)中,當(dāng)面臨一個新的挑戰(zhàn)時,我們應(yīng)如何面對?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

平方根概念的起源與幾何中的正方形有關(guān),如果一個正方形的面積是S,那么這個正方形的邊長是
S
S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

平方根概念的起源與幾何中的正方形有關(guān),如果一個正方形的面積是S,那么這個正方形的邊長是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省亳州市譙城區(qū)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

在數(shù)學(xué)里,我們規(guī)定:a-n= (a≠O).無論從仿照同底數(shù)冪的除法公式來分析,還是仿照分式的約分來分析,這種規(guī)定都是合理的.正是有了這種規(guī)定,指數(shù)的范圍由非負數(shù)擴大到全體整數(shù),概念的擴充與完善使我們解決問題的路更寬了.例如a2•a-3=a2+(-3)=a-1=.?dāng)?shù)的發(fā)展經(jīng)歷了漫長的過程,其實人們早就發(fā)現(xiàn)了非實數(shù)的數(shù).人們規(guī)定:i2=-1,這里數(shù)i類似于實數(shù)單位1,它的運算法則與實數(shù)運算法則完全類似:2i+i=i(注意:由于非實數(shù)與實數(shù)單位不同,因此像2+i之類的運算便無法繼續(xù)進行,2+i就是一個非實數(shù)的數(shù)),6•0.5i=3i; 2i•3i=6i2=-6;(3i)2=-9;-4的平方根為±2i;如果x2=-7,那么x=±i.…數(shù)的不斷發(fā)展進一步證實,這種規(guī)定是合理的.
(1)想一想,作這樣的規(guī)定有什么好處?
(2)試用配方法求一元二次方程x2+x+1=0的非實數(shù)解:
(3)你認為,在學(xué)習(xí)中,當(dāng)面臨一個新的挑戰(zhàn)時,我們應(yīng)如何面對?

查看答案和解析>>

同步練習(xí)冊答案