【題目】計算下列各題
(1)計算: ﹣( 1+(π﹣ 0﹣(﹣1)100;
(2)已知|a+1|+(b﹣3)2=0,求代數(shù)式( )÷ 的值.

【答案】
(1)解:原式=3﹣4+1﹣1=﹣1
(2)解:∵|a+1|+(b﹣3)2=0,

∴a+1=0,b﹣3=0,即a=﹣1,b=3.

則原式= ÷ = × = = =﹣


【解析】(1)原式第一項利用二次根式的化簡公式計算,第二項利用負指數(shù)冪法則計算,第三項利用零指數(shù)冪法則計算,最后一項利用乘方的意義化簡,計算即可得到結(jié)果;(2)利用非負數(shù)的性質(zhì)求出a與b的值,原式通分并利用同分母分式的加法法則計算,將a與b的值代入計算即可求出值.
【考點精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識,掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是兩個全等的三角形,,.現(xiàn)將按如圖所示的方式疊放在一起,保持不動,運動,且滿足:點E在邊BC上運動(不與點B,C重合),且邊DE始終經(jīng)過點A,EFAC交于點M .

(1)求證:∠BAE=MEC;

(2)當EBC中點時,請求出MEMF的值;

(3)在的運動過程中,能否構(gòu)成等腰三角形?若能,請直接寫出所有符合條件的BE的長;若不能,則請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B兩點,與y軸交于C點,其對稱軸為直線x=1.

(1)直接寫出拋物線的解析式:
(2)把線段AC沿x軸向右平移,設(shè)平移后A、C的對應(yīng)點分別為A′、C′,當C′落在拋物線上時,求A′、C′的坐標;
(3)除(2)中的點A′、C′外,在x軸和拋物線上是否還分別存在點E、F,使得以A、C、E、F為頂點的四邊形為平行四邊形?若存在,求出E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,點D在AB的延長線上.
(1)利用尺規(guī)按下列要求作圖,并在圖中標明相應(yīng)的字母(保留作圖痕跡,不寫作法). ①作∠CBD的平分線BM;
②作邊BC上的中線AE,并延長AE交BM于點F.
(2)由(1)得:BF與邊AC的位置關(guān)系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場促銷,小魚將促銷信息告訴了媽媽,假設(shè)某一商品的定價為,并列出不等式為,那么小魚告訴媽媽的信息是(  )

A. 買兩件等值的商品可減100元,再打三折,最后不到1000

B. 買兩件等值的商品可打三折,再減100元,最后不到1000

C. 買兩件等值的商品可減100元,再打七折,最后不到1000

D. 買兩件等值的商品可打七折,再減100元,最后不到1000

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC中,BE平分∠ABCAC邊于點E,過點EDEBCAB于點D,

(1)求證:△BDE為等腰三角形;

(2)若點DAB中點,AB=6,求線段BC的長;

(3)在圖2條件下,若∠BAC=60°,動點P從點B出發(fā),以每秒1個單位的速度沿射線BE運動,請直接寫出圖3當△ABP為等腰三角形時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a,b,c是直角三角形的三條邊長,斜邊c上的高的長是h給出下列結(jié)論

a2,b2c2的長為邊的三條線段能組成一個三角形

, , 的長為邊的三條線段能組成一個三角形

a+b,c+h,h的長為邊的三條線段能組成直角三角形

, 的長為邊的三條線段能組成直角三角形

其中所有正確結(jié)論的序號為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=2x2﹣2 x+1與坐標軸的交點個數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 Rt△ABC 中,∠C=90°,∠BAC=30°,點 D BC 邊上的點,AB=18,將△ABC 沿直線 AD 翻折使點 C 落在 AB 邊上的點 E ,若點 P 是直線 AD 上的動點, BP+EP 的最小值是____

查看答案和解析>>

同步練習冊答案