【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線l與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.
(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),(不與A、C重合),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長(zhǎng)度的最大值,并直接寫出△ACE面積的最大值;
(3)點(diǎn)G為拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.
【答案】
(1)
解:當(dāng)y=0時(shí),解得x1=﹣1或x2=3,
∴A(﹣1,0)B(3,0).
將C點(diǎn)的橫坐標(biāo)x=2代入y=x2﹣2x﹣3得y=﹣3,
∴C(2,﹣3).
設(shè)直線AC的解析式為y=kx+b,將點(diǎn)A和點(diǎn)C的坐標(biāo)代入得: ,
解得:k=﹣1,b=﹣1.
∴直線AC的函數(shù)解析式是y=﹣x﹣1
(2)
解:設(shè)P點(diǎn)的橫坐標(biāo)為x(﹣1≤x≤2)則P、E的坐標(biāo)分別為:P(x,﹣x﹣1),E(x,x2﹣2x﹣3)
∵P點(diǎn)在E點(diǎn)的上方,
∴PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣ )2+ .
∴當(dāng)x= 時(shí),PE的最大值為 .
∴S△ACE= ×PE×(xC﹣xA)= × ×3=
(3)
解:當(dāng)AC為平行四邊形的對(duì)角線時(shí).設(shè)點(diǎn)F的坐標(biāo)為(a,0),點(diǎn)G的坐標(biāo)為(x,y).
∵平行四邊形的對(duì)角線互相平分,
∴依據(jù)中點(diǎn)坐標(biāo)公式可知: , .
∴y=﹣3,x=1﹣a.
∵點(diǎn)G在拋物線上,
∴﹣3=(1﹣a)2﹣2(1﹣a)﹣3,整理得:a2﹣1=0,解得a=﹣1或a=﹣1(舍去).
∴點(diǎn)F的坐標(biāo)為(1,0).
當(dāng)AC為平行四邊形的邊,CF為對(duì)角線時(shí).設(shè)點(diǎn)F的坐標(biāo)為(a,0),點(diǎn)G的坐標(biāo)為(x,y).
∵平行四邊形的對(duì)角線互相平分,
∴依據(jù)中點(diǎn)坐標(biāo)公式可知: , = .
∴y=﹣3,x=a+3
∵點(diǎn)G在拋物線上,
∴﹣3=(a+3)2﹣2(a+3)﹣3,整理得:a2+4a+3=0,將a=﹣3或a=﹣1(舍去)
∴點(diǎn)F的坐標(biāo)為(﹣3,0).
當(dāng)AC為平行四邊形的邊,CG為對(duì)角線時(shí).設(shè)點(diǎn)F的坐標(biāo)為(a,0),點(diǎn)G的坐標(biāo)為(x,y).
∵平行四邊形的對(duì)角線互相平分,
∴依據(jù)中點(diǎn)坐標(biāo)公式可知: , = .
∴y=3,x=a﹣3
∵點(diǎn)G在拋物線上,
∴3=(a﹣3)2﹣2(a﹣3)﹣3,整理得:a2﹣8a+9=0,解得a=4+ 或a=4 .
∴點(diǎn)F的坐標(biāo)為(4+ ,0)或(4﹣ ).
綜上所述,點(diǎn)F的坐標(biāo)為(1,0)或(﹣3,0)或(4+ ,0)或(4﹣ )
【解析】(1)令y=0得到關(guān)于x的方程,解方程可求得點(diǎn)A和點(diǎn)B的橫坐標(biāo),將x=2代入拋物線的解析式求得對(duì)應(yīng)的y值可求得點(diǎn)C的縱坐標(biāo),設(shè)直線AC的解析式為y=kx+b,將點(diǎn)A和點(diǎn)C的坐標(biāo)代入求得k和b的值即可;(2)設(shè)P點(diǎn)的橫坐標(biāo)為x(﹣1≤x≤2)則P、E的坐標(biāo)分別為:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),然后得到PE與x的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)可求得PE的最大值,最后依據(jù)S△ACE= ×PE×(xC﹣xA)求解即可;(3)設(shè)點(diǎn)F的坐標(biāo)為(a,0),點(diǎn)G的坐標(biāo)為(x,y),依據(jù)中點(diǎn)坐標(biāo)公式求得點(diǎn)G的坐標(biāo),然后將點(diǎn)G的坐標(biāo)代入拋物線的解析式求得對(duì)應(yīng)的a的值即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識(shí),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn),以及對(duì)二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABHK是邊長(zhǎng)為6的正方形,點(diǎn)C、D在邊AB上,且AC=DB=1,點(diǎn)P是線段CD上的動(dòng)點(diǎn),分別以AP、PB為邊在線段AB的同側(cè)作正方形AMNP和正方形BRQP,E、F分別為MN、QR的中點(diǎn),連接EF,設(shè)EF的中點(diǎn)為G,則當(dāng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)G移動(dòng)的路徑長(zhǎng)為( )
A.1
B.2
C.3
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長(zhǎng)為3的正六邊形鐵絲框ABCDEF變形為以點(diǎn)A為圓心,AB為半徑的扇形(忽略鐵絲的粗細(xì)).則所得扇形AFB(陰影部分)的面積為( )
A.6π
B.18
C.18π
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過邊長(zhǎng)為1的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長(zhǎng)為( )
A. B. C. D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、E分別在直線AC和DF上,若∠AGB=∠EHF,∠C=∠D,可以證明∠A=∠F.請(qǐng)完成下面證明過程中的各項(xiàng)“填空”.
證明:∵∠AGB=∠EHF(理由: )
∠AGB= (對(duì)頂角相等)
∴∠EHF=∠DGF,∴DB∥EC(理由: )
∴ =∠DBA(兩直線平行,同位角相等)
又∵∠C=∠D,∴∠DBA=∠D,
∴DF∥ (內(nèi)錯(cuò)角相等,兩直線平行)
∴∠A=∠F(理由: ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點(diǎn)P是BC上的一點(diǎn).
(1)請(qǐng)寫出圖中∠1的一對(duì)同位角,一對(duì)內(nèi)錯(cuò)角,一對(duì)同旁內(nèi)角;
(2)求∠EFC與∠E的度數(shù);
(3)若∠BFP=46°,請(qǐng)判斷CE與PF是否平行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,DE∥AB.請(qǐng)根據(jù)已知條件進(jìn)行推理,分別得出結(jié)論,并在括號(hào)內(nèi)注明理由.
(1)∵DE∥AB,( 已知 )
∴∠2= . ( , )
(2)∵DE∥AB,(已知 )
∴∠3= .( , )
(3)∵DE∥AB(已知 ),
∴∠1+ =180°.( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,完成下列推理過程,已知AB∥CD,AC∥BD,
(1)∵AB∥CD(已知) ∴∠A=∠5(兩直線平行,_______________);
(2)∵AC∥BD(已知) ∴∠3=∠4(兩直線平行,_______________);
(3)∵AB∥CD(已知) ∴∠__=∠___(兩直線平行,內(nèi)錯(cuò)角相等);
(4)∵AB∥CD(已知) ∴∠D +∠______ =180°(兩直線平行,____)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的正六邊形ABCDEF的中心在坐標(biāo)原點(diǎn)O,點(diǎn)P從點(diǎn)B出發(fā),沿正六邊形的邊按順時(shí)針方向以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),則第2017秒時(shí),點(diǎn)P的坐標(biāo)是( )
A.(1, )
B.(﹣1,﹣ )
C.(1,﹣ )
D.(﹣1, )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com