【題目】8分如圖AOB、COD是等腰直角三角形,點(diǎn)D在AB上

1求證:AOC≌△BOD;

2若AD=3,BD=1,求CDABC的面積

【答案】1詳見(jiàn)解析;2

【解析】

試題分析:1因?yàn)?/span>AOB=COD=90°,由等量代換可得DOB=AOC,又因?yàn)?/span>AOBCOD均為等腰直角三角形,所以O(shè)C=OD,OA=OB,AOC≌△BOD21可知AOC≌△BOD,所以AC=BD=1,CAO=DBO=45°由等量代換求得CAB=90°,根據(jù)勾股定理即可求出CD的長(zhǎng)

試題解析: 1證明:∵∠DOB=90°-AODAOC=90°-AOD,

∴∠DOB=AOC,

OC=ODOA=OB,

AOCBOD

,

∴△AOC≌△BODSAS;

2解:∵△AOC≌△BOD,

AC=BD=1,CAO=DBO=45°,

∴∠CAB=CAO+BAO=90°

CD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(1,0)、B(3,0)、C(0,3)三點(diǎn)。

(1)求拋物線的解析式。

(2)點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過(guò)MMNy軸交拋物線于N若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng)。

(3)在(2)的條件下,連接NB、NC,是否存在m,使BNC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(2,-3)( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米.

(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.

①求拋物線的解析式;

②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?

(2)如圖2,若把橋看做是圓的一部分.

①求圓的半徑;

②要使高為3米的船通過(guò),則其寬度須不超過(guò)多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】9的算術(shù)平方根是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店連續(xù)兩次降價(jià)10%后商品的價(jià)格是81元,則該商品原來(lái)的價(jià)格是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:

我們經(jīng)常通過(guò)認(rèn)識(shí)一個(gè)事物的局部或其特殊類型,來(lái)逐步認(rèn)識(shí)這個(gè)事物;比如我們通過(guò)學(xué)習(xí)特殊的四邊形,即平行四邊形(繼續(xù)學(xué)習(xí)它們的特殊類型如矩形、菱形等)來(lái)逐步認(rèn)識(shí)四邊形;

我們對(duì)課本里特殊四邊形的學(xué)習(xí),一般先學(xué)習(xí)圖形的定義,再探索發(fā)現(xiàn)其性質(zhì)和判定方法,然后通過(guò)解決簡(jiǎn)單的問(wèn)題鞏固所學(xué)知識(shí);

請(qǐng)解決以下問(wèn)題:

如圖,我們把滿足AB=AD、CB=CDABBC的四邊形ABCD叫做“箏形”;

⑴寫(xiě)出箏形的兩個(gè)性質(zhì)(定義除外);

⑵寫(xiě)出箏形的兩個(gè)判定方法(定義除外),并選出一個(gè)進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(2-4)位于( )

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案