【題目】如圖①,在△ABC中,∠BAC=90', AB=AC, AE是過點A的一條直線,且點B, CAE的異側(cè),BDAE于點D, CEAE于點E.

(1)求證: BD=DE +CE ;

(2)若當直線AE旋轉(zhuǎn)到圖②位置時,判斷BDDECE的數(shù)量關系,并說明理由.

【答案】1)詳見解析;(2BD=DE-CE,理由詳見解析.

【解析】

1)在直角三角形中,由題中條件可得∠ABDEACABAC,則可判定RtBDARtAEC,由三角形全等可得三角形對應邊相等,進而通過線段之間的轉(zhuǎn)化,可得出結(jié)論;

2)由題中條件同(1)可證RtBDARtAEC,得出對應線段相等,進而可得線段之間的關系.

1)∵∠BAC90°,BDAE,CEAE

∴∠ABD+∠BAD90°,∠BAD+∠EAC90

∴∠ABD=∠EAC,

RtBDARtAEC中,

RtBDARtAECAAS),

BDAE,ADCE

BDAEADDEDE +CE;

2BDDECE,

理由:∵∠BAC90°BDAE,CEAE

∴∠ABD+∠BAD90°,∠BAD+∠EAC90°

∴∠ABD=∠EAC,

RtBDARtAEC中,,

RtBDARtAECAAS),

BDAE,ADCE,

BDAEDEADDECE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在數(shù)軸上點A表示數(shù)a,B表示數(shù)b,C表示數(shù)c,a是多項式2x24x+1的一次項系數(shù),b是最小的正整數(shù),單項式x2y4的次數(shù)為c.

(1)a=___b=___,c=___;

(2)若將數(shù)軸在點B處折疊,則點A與點C___重合(填“能”或“不能”);

(3)A,B,C開始在數(shù)軸上運動,若點C以每秒1個單位長度的速度向右運動,同時,A和點B分別以每秒3個單位長度和2個單位長度的速度向左運功,t分鐘過后,若點A與點B之間的距離表示為AB,B與點C之間的距離表示為BC,AB=___,BC=___(用含t的代數(shù)式表示);

(4)請問:3ABBC的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每個小正方形的邊長都為 1,△ABC 的頂點都在格點上.

(1)判斷ABC 是什么形狀,并說明理由.

(2)ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在四邊形中,,、分別是邊上的點,若,可求得、之間的數(shù)量關系為______.(只思考解題思路,完成填空即可,不必書寫證明過程)

2)如圖2,在四邊形中,,,分別是邊、延長線上的點,若,判斷、之間的數(shù)量關系還成立嗎,若成立,請完成證明,若不成立,請說明理由.(可借鑒第(1)問的解題經(jīng)驗)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于點D,BE⊥MN于點E

1)求證:①△ADC≌△CEB;②DE=AD+BE

2)當直線MN繞點C旋轉(zhuǎn)到圖2的位置時,DEAD、BE又怎樣的關系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 直線MN與直線PQ垂直相交于O,點A在射線OP上運動,點B在射線OM上運動.

1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點A、B在運動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值;

2)如圖2,延長BAG,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其延長線相交于EF,則∠EAF=______°;在AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上點表示的數(shù)是,點表示的數(shù)是,則線段的長表示為.例如:數(shù)軸上點表示的數(shù)是5,點表示的數(shù)是2,則線段的長表示為

1)點表示的數(shù)是3,線段的長可表示為______

2)若______

3)數(shù)軸上的任意一點表示的數(shù)是,且的最小值為5,若,則的值為______

4)如圖,在數(shù)軸上點在點的右邊,若代數(shù)式互為相反數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,∠BAC=58°,∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠BEO的度數(shù)是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠E=F=90°,∠B=CAE=AF,下列結(jié)論不正確的結(jié)論是(

A.CD=DN;B.1=2C.BE=CF;D.ACN≌△ABM

查看答案和解析>>

同步練習冊答案