【題目】張老師駕車從家出發(fā)到植物園賞花,勻速行駛一段時(shí)間后,途中遇到堵車原地等待一會(huì)兒,然后加速行駛,到達(dá)植物園,參觀結(jié)束后,張老師駕車一路勻速返回,其中x表示汽車從家出發(fā)后所用時(shí)間,y表示車離家的距離,下面能反映y與x的函數(shù)關(guān)系式的大致圖象是(
A.
B.
C.
D.

【答案】A
【解析】解:由題意得:離家的距離越來越遠(yuǎn),直線呈上升趨勢,
根據(jù)途中加油,可得路程不變,時(shí)間加長,直線呈水平狀態(tài),
后來加速行駛,可得路程變化快,直線上升快,
看櫻花時(shí),路程不變,時(shí)間加長,直線呈水平狀態(tài),
再勻速回家,離家距離越來越近,直線呈下降趨勢,
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的圖象的相關(guān)知識(shí),掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的兩個(gè)實(shí)數(shù)根,且x1、x2滿足不等式x1x2+2(x1+x2)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點(diǎn)的坐標(biāo)為,點(diǎn)軸正半軸上,點(diǎn)在第三象限的雙曲線上,過點(diǎn)軸交雙曲線于點(diǎn),連接,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,這是一個(gè)供滑板愛好者使用的U型池,該U型池可以看成是一個(gè)長方體去掉一個(gè)“半圓柱”,中間可供滑行部分的截面是半徑為4 m的半圓,其邊緣ABCD=20 m,點(diǎn)ECD上,CE=2 m.一滑板愛好者從A點(diǎn)滑到E點(diǎn),則他滑行的最短路程約為____________(邊緣部分的厚度忽略不計(jì),結(jié)果保留整數(shù).提示:482≈222).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會(huì)為了解本校初中學(xué)生每天做作業(yè)所用時(shí)間情況,采用問卷的方式對一部分學(xué)生進(jìn)行調(diào)查.在確定調(diào)查對象時(shí),大家提出以下幾種方案:A.對各班班長進(jìn)行調(diào)查;B.對某班的全體學(xué)生進(jìn)行調(diào)查;C.從全校每班隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查.在問卷調(diào)查時(shí),每位被調(diào)查的學(xué)生都選擇了問卷中適合自己的一個(gè)時(shí)間,學(xué)生會(huì)將收集到的數(shù)據(jù)整理后繪制成如圖所示的條形統(tǒng)計(jì)圖.

(1)為了使收集到的數(shù)據(jù)具有代表性.學(xué)生會(huì)在確定調(diào)查對象時(shí)應(yīng)選擇方案________ (A,BC);

(2)被調(diào)查的學(xué)生每天做作業(yè)所用時(shí)間的眾數(shù)為________h;

(3)根據(jù)以上統(tǒng)計(jì)結(jié)果,估計(jì)該校900名初中學(xué)生中每天做作業(yè)用1.5 h的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,B=30°,AD平分CAB.

(1)求CAD的度數(shù);

(2)延長AC至E,使CE=AC,求證:DA=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,連接DH,求證:

(1)EH=FH;
(2)∠CAB=2∠CDH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDEADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:

①AD=BE;②PQ∥AE;③AP=BQ④DE=DP; ⑤∠AOB=60°

其中正確的結(jié)論的個(gè)數(shù)是( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B也在拋物線L1上(點(diǎn)A與點(diǎn)B不重合),我們定義:這樣的兩條拋物L(fēng)1 , L2互為“友好”拋物線,可見一條拋物線的“友好”拋物線可以有多條.

(1)如圖2,已知拋物線L3:y=2x2﹣8x+4與y軸交于點(diǎn)C,試求出點(diǎn)C關(guān)于該拋物線對稱軸對稱的點(diǎn)D的坐標(biāo);
(2)請求出以點(diǎn)D為頂點(diǎn)的L3的友好拋物線L4的解析式,并指出L3與L4中y同時(shí)隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1 (x﹣m)2+n的任意一條友好拋物線的解析式為y=a2 (x﹣h)2+k,請寫出a1與a2的關(guān)系式,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案