如下圖,正方形ABCD的頂點(diǎn)A,B的坐標(biāo)分別為(0,10),(8,4),頂點(diǎn)C,D在第一象限.點(diǎn)P從點(diǎn)A出發(fā),沿正方形按逆時(shí)針?lè)较騽蛩龠\(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)E(4,0)出發(fā),沿x軸正方向以相同速度運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)求正方形ABCD的邊長(zhǎng).

(2)當(dāng)點(diǎn)P在AB邊上運(yùn)動(dòng)時(shí),△OPQ的面積S(平方單位)與時(shí)間t(秒)之間的函數(shù)圖象為拋物線的一部分(如圖所示),求P,Q兩點(diǎn)的運(yùn)動(dòng)速度.

(3)求(2)中面積S(平方單位)與時(shí)間t(秒)的函數(shù)關(guān)系式及面積S取最大值時(shí)點(diǎn)P的坐標(biāo).

(4)若點(diǎn)P,Q保持(2)中的速度不變,則點(diǎn)P沿著AB邊運(yùn)動(dòng)時(shí),∠OPQ的大小隨著時(shí)間t的增大而增大;沿著B(niǎo)C邊運(yùn)動(dòng)時(shí),∠OPQ的大小隨著時(shí)間t的增大而減。(dāng)點(diǎn)P沿著這兩邊運(yùn)動(dòng)時(shí),使∠OPQ=90°的點(diǎn)P有________個(gè).

(拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是.)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:解答題

如下圖,在△ABC中,AB=AC,D是BC的中點(diǎn),DE⊥AB,DF⊥AC,垂足分別是BC的中點(diǎn),E,F(xiàn)。
(1)試說(shuō)明:DE=DF;
(2)只添加一個(gè)條件,使四邊形EDFA是正方形,請(qǐng)你至少寫(xiě)出兩種不同的添加方法。(不另外添加輔助線,無(wú)需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如下圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E.

(1)求證:四邊形ADCE為矩形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如下圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,

(1)求證:四邊形ADCE為矩形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如下圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,

(1)求證:四邊形ADCE為矩形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如下圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,則網(wǎng)格上的三角形ABC中,邊長(zhǎng)為無(wú)理數(shù)的邊數(shù)為(    )

A.0                     B.1                     C.2                     D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案