如圖所示,一般書(shū)本的紙張是原紙張多次對(duì)開(kāi)得到的,矩形ABCD沿EF對(duì)開(kāi)后,再把矩形EFCD沿MN對(duì)開(kāi),依次類推,若各種開(kāi)本的矩形都相似,那么等于(   )
A.0.618B.C.D.2
B
考點(diǎn):
分析:根據(jù)相似多邊形的對(duì)應(yīng)邊成比例求解.
解答:解:∵矩形ABCD∽矩形BFEA,∴AB:BF=AD:AB,∴AD?BF=AB?AB,
又∵BF=AD,∴AD2=AB2,∴
故選B.
點(diǎn)評(píng):本題考查相似多邊形的性質(zhì).相似多邊形對(duì)應(yīng)邊之比、周長(zhǎng)之比等于相似比,而面積之比等于相似比的平方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,梯形ABCD中,AB∥CD,∠DAB=90°,F(xiàn)是BC的中點(diǎn),
連接DF并延長(zhǎng)DF交AB于點(diǎn)E,連接AF。

小題1:(1)求證:△CDF≌△BEF;
小題2:(2)若∠E=28°,求∠AFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

右圖是對(duì)稱中心為點(diǎn)的正六邊形.如果用一個(gè)含角的直角三角板的角,借助點(diǎn)(使角的頂點(diǎn)落在點(diǎn)處),把這個(gè)正六邊形的面積等分,那么的所有
可能的值是             

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,把一長(zhǎng)方形紙片ABCD沿EG折疊后,點(diǎn)A、B分別落在A’、B’的位置上,EA’與BC相交于點(diǎn)F。已知,則的度數(shù)是

A、50°
B、80°
C、65°
D、40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,梯形ABCD中,AD//BC,∠B+∠C=900,AD=2,BC=12,AB=6,DC=8.E、F分別是AD、BC的中點(diǎn),則EF=        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正方形中,點(diǎn)的中點(diǎn),連接、,點(diǎn)
的中點(diǎn),連接、,點(diǎn)上一點(diǎn)且,過(guò)點(diǎn)
于點(diǎn),連接.下列結(jié)論中
;②;③;④
其中正確結(jié)論的個(gè)數(shù)是:
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

□ABCD中,EAB延長(zhǎng)線上的一點(diǎn),若∠1=60°,則∠A的度數(shù)為(   ).
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖(1)在梯形ABCD中,AD∥BC,且AD=4cm,AB=6cm,BC=12cm,DC=10cm.若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒4cm的速度沿線段AD、DC向C點(diǎn)運(yùn)動(dòng);動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)以每秒5cm的速度沿CB向B點(diǎn)運(yùn)動(dòng). 當(dāng)Q點(diǎn)到達(dá)B點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng). 設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒.
 
小題1:求梯形ABCD的面積.
小題2:當(dāng)t為何值時(shí),四邊形PQCD成為平行四邊形?
小題3:是否存在t,使得P點(diǎn)在線段DC上,且PQ⊥DC(如圖(2)所示)?若存在,求出此時(shí)t的值,若不存在,說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將一張矩形紙片對(duì)折(如圖),然后沿著圖中的虛線剪下,得到①、②兩部分,將①展開(kāi)后得到的平面圖形是                                          (    )
A.三角形B.矩形C.菱形D.梯形

查看答案和解析>>

同步練習(xí)冊(cè)答案