【題目】如圖,已知正方形ABCD的邊長(zhǎng)為2,E是邊BC上的動(dòng)點(diǎn),BF⊥AE交CD于點(diǎn)F,垂足為G,連結(jié)CG.下列說(shuō)法:①AG>GE;②AE=BF;③點(diǎn)G運(yùn)動(dòng)的路徑長(zhǎng)為π;④CG的最小值為-1.其中正確的說(shuō)法是 .(把你認(rèn)為正確的說(shuō)法的序號(hào)都填上)
【答案】②④.
【解析】
試題解析:如圖:
∵在正方形ABCD中,BF⊥AE,
∴∠AGB保持90°不變,
∴G點(diǎn)的軌跡是以AB中點(diǎn)O為圓心,AO為半徑的圓弧,
∴當(dāng)E移動(dòng)到與C重合時(shí),F(xiàn)點(diǎn)和D點(diǎn)重合,此時(shí)G點(diǎn)為AC中點(diǎn),
∴AG=GE,故①錯(cuò)誤;
∵BF⊥AE,
∴∠AEB+∠CBF=90°,
∵∠AEB+∠BAE=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(AAS),
∴故②正確;
∵當(dāng)E點(diǎn)運(yùn)動(dòng)到C點(diǎn)時(shí)停止,
∴點(diǎn)G運(yùn)動(dòng)的軌跡為圓,
圓弧的長(zhǎng)=×π×2=,故③錯(cuò)誤;
由于OC和OG的長(zhǎng)度是一定的,因此當(dāng)O、G、C在同一條直線上時(shí),CG取最小值,
OC=,
CG的最小值為OC-OG=-1,故④正確;
綜上所述,正確的結(jié)論有②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙E的圓心E(3,0),半徑為5,⊙E與y軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的上方),與x軸的正半軸相交于點(diǎn)C;直線l的解析式為y=x+4,與x軸相交于點(diǎn)D;以C為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)B.
(1)求拋物線的解析式;
(2)判斷直線l與⊙E的位置關(guān)系,并說(shuō)明理由;
(3) 動(dòng)點(diǎn)P在拋物線上,當(dāng)點(diǎn)P到直線l的距離最小時(shí),求出點(diǎn)P的坐標(biāo)及最小距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓O1、半圓O2、…、半圓On與直線y=x相切,設(shè)半圓O1、半圓O2、…、半圓On的半徑分別是r1、r2、…、rn,則當(dāng)r1=2時(shí),r2016= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有A、B兩個(gè)口袋,A口袋中裝有兩個(gè)分別標(biāo)有數(shù)字2,3的小球;B口袋中裝有三個(gè)分別標(biāo)有數(shù)字3,4,5的小球.小明先從A口袋中隨機(jī)取出-個(gè)小球,再?gòu)腂口袋中隨機(jī)取出一個(gè)小球;
(1)用樹(shù)狀圖法或列表法表示小明所取出的二個(gè)小球的和為奇數(shù)的概率.
(2)若從A口袋中取出的小球記為x,從B口袋中取出的小球記為y,則點(diǎn)M(x,y)落在直線y=x+1上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備組織部分學(xué)生到少年宮參加活動(dòng),陳老師從少年宮帶回來(lái)兩條信息:
信息一:按原來(lái)報(bào)名參加的人數(shù),共需要交費(fèi)用320元,如果參加的人數(shù)能夠增加到原來(lái)人數(shù)的2倍,就可以享受優(yōu)惠,此時(shí)只需交費(fèi)用480元;信息二:如果能享受優(yōu)惠,那么參加活動(dòng)的每位同學(xué)平均分?jǐn)偟馁M(fèi)用比原來(lái)少4元.根據(jù)以上信息,原來(lái)報(bào)名參加的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.求證:ADBC=APBP.
(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立?說(shuō)明理由.
(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問(wèn)題:
如圖3,在△ABD中,AB=12,AD=BD=10.點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘輪船航行到B處時(shí),測(cè)得小島A在船的北偏東60°的方向,輪船從B處繼 續(xù)向正東方向航行200海里到達(dá)C處時(shí),測(cè)得小島A在船的北偏東30°的方向.己知在小島周圍170海里內(nèi)有暗礁,若輪船不改變航向繼續(xù)向前行駛,試問(wèn)輪船有無(wú)觸礁的危險(xiǎn)?(≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形ABCD中,AD∥BC,AB⊥BC,點(diǎn)E在邊AB上,∠DEC=900,且DE=EC.
(1)求證:△ADE≌△BEC;
(2)若AD=a,AE=b,DE=c,請(qǐng)用圖1證明勾股定理:a2+b2=c2;
(3)線段AB上另有一點(diǎn)F(不與點(diǎn)E重合),且DF⊥CF(如圖2),若AD=2,BC=4,求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com