如圖所示,E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別是C,D.

求證:(1)∠ECD=∠EDC.

(2)OC=OD.

(3)OE是CD的垂直平分線.

答案:
解析:

  因?yàn)镋C⊥OA,ED⊥OB,OE平分∠AOB.所以ED=EC.

  所以E在CD的垂直平分線上.在Rt△ODE和Rt△OCE中,

  ,所以Rt△ODE≌Rt△DCE(HL),所以O(shè)D=OC.

  所以O(shè)在CD的垂直平分線上,所以O(shè)E是CD的垂直平分線.

  所以△EDC為軸對(duì)稱圖形,所以∠ECD=∠EDC.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,P是∠AOB的平分線上的點(diǎn),PC⊥AO于C,PD⊥OB于D,OP=2
3
,OD=3,則PC=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,P是⊙O外一點(diǎn),PA是⊙O的切線,A是切點(diǎn),B是⊙O 上一點(diǎn),且PA精英家教網(wǎng)=PB,連接AO、BO、AB,并延長(zhǎng)BO與切線PA相交于點(diǎn)Q.
(1)求證:PB是⊙O的切線;
(2)求證:AQ•PQ=OQ•BQ;
(3)設(shè)∠AOQ=α,若cosα=
45
,OQ=15,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,直線是四邊形ABCD的對(duì)稱軸,若AB=CD,則下列結(jié)論:
①AB∥CD;②AO=OC;③AB⊥BC;④AC⊥BD.
其中正確的結(jié)論的個(gè)數(shù)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,l是四邊形ABCD的對(duì)稱軸,AD∥BC,現(xiàn)給出下列結(jié)論:
①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正確的結(jié)論有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(貴州黔南州卷)數(shù)學(xué) 題型:解答題

如圖所示,P是⊙O外一點(diǎn),PA是⊙O的切線,A是切點(diǎn),B是⊙O 上一點(diǎn),且PA=PB,連接AO、BO、AB,并延長(zhǎng)BO與切線PA相交于點(diǎn)Q.

(1)求證:PB是⊙O的切線;

(2)求證:AQ•PQ=OQ•BQ;

(3)設(shè)∠AOQ=α,若cosα= ,OQ=15,求AB的長(zhǎng).

 

 

[來(lái)源:ZXXK]

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案