【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①a<0;② =1;③b2﹣4ac<0;④當(dāng)x>1時(shí),y隨x的增大而減小;⑤當(dāng)﹣1<x<3時(shí),y<0,其中正確的是_____.(只填序號(hào))
【答案】②⑤.
【解析】圖像開(kāi)口向上,所以a>0,所以①說(shuō)法錯(cuò)誤;拋物線與x軸的交點(diǎn)坐標(biāo)分別是(-1,0)和(3,0),所以對(duì)稱軸-==1,所以②說(shuō)法正確;根據(jù)圖像可得,二次函數(shù)y=ax2+bx+c(a≠0)與x軸有兩個(gè)交點(diǎn),所以一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不相等的實(shí)數(shù)根,所以b2﹣4ac>0,所以③說(shuō)法錯(cuò)誤;當(dāng)x>2時(shí),y隨著x的增大而增大,所以④說(shuō)法錯(cuò)誤;通過(guò)圖像不難得出當(dāng)﹣1<x<3時(shí),y<0,所以⑤說(shuō)法正確.正確的說(shuō)法有②⑤.
故答案為②⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“構(gòu)造圖形解題”,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無(wú)措,難以下手,這時(shí),如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過(guò)構(gòu)造適合的幾何圖形,將會(huì)得到事半功倍的效果,下面介紹兩則實(shí)例:
實(shí)例一:1876年,美國(guó)總統(tǒng)伽非爾德利用實(shí)例一圖證明了勾股定理:由
S四邊形ABCD=S△ABC+S△ADE+S△ABE得,化簡(jiǎn)得:
實(shí)例二:歐幾里得的《幾何原本》記載,關(guān)于x的方程的圖解法是:
畫Rt△ABC,使∠ABC=90°,BC=,AC=,再在斜邊AB上截取BD=,則AD的長(zhǎng)就是該方程的一個(gè)正根(如實(shí)例二圖)
請(qǐng)根據(jù)以上閱讀材料回答下面的問(wèn)題:
(1)如圖1,請(qǐng)利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學(xué)公式是 ,乙圖要證明的數(shù)學(xué)公式是
(2)如圖2,若2和-8是關(guān)于x的方程x2+6x=16的兩個(gè)根,按照實(shí)例二的方式構(gòu)造Rt△ABC,連接CD,求CD的長(zhǎng);
(3)若x,y,z都為正數(shù),且x2+y2=z2,請(qǐng)用構(gòu)造圖形的方法求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在面積為3的△ABC中,AB=3,∠BAC=45°,點(diǎn)D是BC邊上一點(diǎn).
(1)若AD是BC邊上的中線,求AD的長(zhǎng);
(2)點(diǎn)D關(guān)于直線AB和AC的對(duì)稱點(diǎn)分別為點(diǎn)M、N,求AN的長(zhǎng)度的最小值;
(3)若P是△ABC內(nèi)的一點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯(cuò)誤的是( 。
A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角三角形ABC內(nèi)接于⊙O,AD⊥BC,垂足為D.
(1)如圖1, ,BD=DC,求∠B的度數(shù);
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點(diǎn)F,過(guò)點(diǎn)B作BG∥AD交⊙O于點(diǎn)G,在AB邊上取一點(diǎn)H,使得AH=BG.求證:△AFH是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣﹣x+4,
(1)用配方法確定它的頂點(diǎn)坐標(biāo)、對(duì)稱軸;
(2)x取何值時(shí),y隨x增大而減小?
(3)x取何值時(shí),拋物線在x軸上方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論中,錯(cuò)誤結(jié)論有( );①三角形三條高(或高的延長(zhǎng)線)的交點(diǎn)不在三角形的內(nèi)部,就在三角形的外部;②一個(gè)多邊形的邊數(shù)每增加一條,這個(gè)多邊形的內(nèi)角和就增加360;③兩條平行直線被第三條直線所截,同旁內(nèi)角的角平分線互相平行;④三角形的一個(gè)外角等于任意兩個(gè)內(nèi)角的和;⑤在中,若,則為直角三角形;⑥順次延長(zhǎng)三角形的三邊,所得的三角形三個(gè)外角中銳角最多有一個(gè)
A. 6個(gè)B. 5個(gè)C. 4個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=(<600),D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,過(guò)點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE、BE、DF
(1)求證:BE=CD
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(a,0),點(diǎn)B的坐標(biāo)是(b,0),其中a,b滿足.
(1)填空:a=______,b=_______;
(2)在軸負(fù)半軸上有一點(diǎn)M(0,m),三角形ABM的面積為4.
①求m的值;
②將線段AM沿x軸正方向平移,使得A的對(duì)應(yīng)點(diǎn)為B,M的對(duì)應(yīng)點(diǎn)為N. 若點(diǎn)P為線段AB上的任意一點(diǎn)(不與A,B重合),試寫出∠MPN,∠PMA,∠PNB之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com