已知,矩形ABCO在直角坐標(biāo)系的第一象限內(nèi),如圖,點(diǎn)A、C的坐標(biāo)分別為(1,0)、(0,3),現(xiàn)將矩形ABCO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得矩形A'BC'O',使點(diǎn)O' 落在x軸的正半軸上,且AB與C'O'交于點(diǎn)D,求:
(1)點(diǎn)O' 的坐標(biāo);
(2)線段AD的長(zhǎng)度;
(3)經(jīng)過兩點(diǎn)O'、C' 的直線的函數(shù)表達(dá)。
解:(1)連結(jié)BO和BO',可以說明OA=O'A
∴點(diǎn)O' 的坐標(biāo)為(2,0);
(2)設(shè)AD=m
∵BC'=O'A=1,∠BC'D=∠O'AD=90°,∠BDC'=∠O'DA
∴Rt△BDC'≌Rt△O'DA
∴C'D=AD=m
則DO'=3-m
在Rt△ADO'中,AD2+AO'2=DO'2
∴m2+12=(3-m)2
解得:m=
∴線段AD的長(zhǎng)度為;
(3)設(shè)經(jīng)過點(diǎn)O'、C' 的直線的函數(shù)表達(dá)式為y=kx+b
由(1)和(2)得點(diǎn)O'的坐標(biāo)為(2,0),點(diǎn)D的坐標(biāo)為(1,
而點(diǎn)O'和D都在這條直線上

解之得:,b=
∴經(jīng)過點(diǎn)O'、C' 的直線的函數(shù)表達(dá)式為y=x+。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,矩形ABCO在直角坐標(biāo)系的第一象限內(nèi),如圖,點(diǎn)A、C的坐標(biāo)分別為精英家教網(wǎng)(1,0)、(0,3),現(xiàn)將矩形ABCO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得矩形A′BC′O′,使點(diǎn)O′落在x軸的正半軸上,且AB與C′O′交于點(diǎn)D,求:
(1)點(diǎn)O′的坐標(biāo);
(2)線段AD的長(zhǎng)度;
(3)經(jīng)過兩點(diǎn)O′、C′的直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,矩形ABCO在直角坐標(biāo)系的第一象限內(nèi),如圖,點(diǎn)A、C的坐標(biāo)分別為(1,0)、(0,3),現(xiàn)將矩形ABCO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得矩形A′BC′O′,使點(diǎn)O′落在x軸的正半軸上,且AB與C′O′交于點(diǎn)D,求:
(1)點(diǎn)O′的坐標(biāo);
(2)線段AD的長(zhǎng)度;
(3)經(jīng)過兩點(diǎn)O′、C′的直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省期末題 題型:解答題

已知,矩形ABCO在直角坐標(biāo)系的第一象限內(nèi),如圖,點(diǎn)A、C的坐標(biāo)分別為(1,0)、(0,3),現(xiàn)將矩形ABCO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得矩形A'BC'O',使點(diǎn)O'落在x軸的正半軸上,且AB與C'O'交于點(diǎn)D,求:
(1)點(diǎn)O'的坐標(biāo);
(2)線段AD的長(zhǎng)度;
(3)經(jīng)過兩點(diǎn)O'、C'的直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖北省期末題 題型:解答題

已知,矩形ABCO在直角坐標(biāo)系的第一象限內(nèi),如下圖,點(diǎn)A、C的坐標(biāo)分別為(1,0)、(0,3),現(xiàn)將矩形ABCO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得矩形A'BC'O',使點(diǎn)O'落在x軸的正半軸上,且AB與C'O'交于點(diǎn)D,求:
(1)點(diǎn)O'的坐標(biāo);
(2)線段AD的長(zhǎng)度;
(3)經(jīng)過兩點(diǎn)O'、C'的直線的函數(shù)表達(dá)式。

查看答案和解析>>

同步練習(xí)冊(cè)答案