【題目】如圖,A、B分別是x軸上位于原點左右兩側(cè)的兩點,點P(a,4)在第一象限內(nèi),一過原點的直線y=2x與直線BD、直線AC同時過點P,直線BD交y軸于點D,且線段AO=2.

(1)求△AOP的面積;
(2)若SBOP=3SAOP , 求直線BD的解析式.

【答案】
(1)解:(1)作PE⊥x軸于點E,

∵點P(a,4),則PE=4,

∴SAOP= OAPE= ×2×4=4;


(2)解:∵SBOP=3SAOP

∴OB=3OA,

∴點B坐標為(6,0),

又∵點P(a,4)在直線y=2x上,

∴2a=4,a=2,

∴P(2,4),

設(shè)直線BD解析式為y=kx+b,

解得:k=﹣1、b=6,

∴直線BD的解析式為y=﹣x+6.


【解析】(1)作PE⊥x軸于點E,由點P(a,4),則PE=4,得到SAOP= OAPE= ×2×4=4;(2)由SBOP=3SAOP,得到OB=3OA,得到點B坐標為(6,0),又點P(a,4)在直線y=2x上,得到2a=4,a=2,P(2,4),設(shè)直線BD解析式為y=kx+b,代入得到k=﹣1、b=6,所以直線BD的解析式為y=﹣x+6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:x3﹣4x2﹣12x=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用四舍五入法將2.896精確到0.01,所得到的近似數(shù)為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,BC,AC,AB邊的中點分別是點D,E,F(xiàn),則下列說法可能不正確的為( )

A.四邊形CDFE是矩形
B.DE=CF= AB
C.SABC=4SAEF
D.∠B=30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)衢州市統(tǒng)計局發(fā)布的統(tǒng)計數(shù)據(jù)顯示,衢州市近5年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2016年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示。

請根據(jù)圖中信息,解答下列問題:

(1)求2016年第一產(chǎn)業(yè)生產(chǎn)總值(精確到1億元);

(2)2016年比2015年的國民生產(chǎn)總值增加了百分之幾(精確到1%)?

(3)若要使2018年的國民生產(chǎn)總值達到1573億元,求2016年至2018年我市國民生產(chǎn)總值平均年增長率(精確到1%)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景

如圖1,在正方形ABCD的內(nèi)部,作DAE=ABF=BCG=CDH,根據(jù)三角形全等的條件,易得DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。

類比研究

如圖2,在正ABC的內(nèi)部,作BAD=CBE=ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)。

(1)ABD,BCE,CAF是否全等?如果是,請選擇其中一對進行證明;

(2)DEF是否為正三角形?請說明理由;

(3)進一步探究發(fā)現(xiàn),ABD的三邊存在一定的等量關(guān)系,設(shè),,,請?zhí)剿?/span>,滿足的等量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育課上,某班兩名同學分別進行了5次短跑訓練,要判斷哪一名同學的成績比較穩(wěn)定,通常需要比較這兩名學生成績的(
A.平均數(shù)
B.頻數(shù)分布
C.中位數(shù)
D.方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】αβ的度數(shù)分別是2m-1977-m,且αβ都是γ的補角,那么αβ的關(guān)系是(  )

A. 不互余且不相等B. 不互余但相等

C. 互為余角但不相等D. 互為余角且相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若實數(shù)x滿足x22x10,則2x37x2+4x2017=(  )

A. 2017B. 2018C. 2019D. 2020

查看答案和解析>>

同步練習冊答案