【題目】如圖,在半徑為的中,是直徑,點是中點,連接,交于點,弦于點,交于點,過的切線交的延長線于點,.
(1)求的長;
(2)連接,求證:;
(3)當(dāng)點在上運動時,連接,,求的值.
【答案】(1)8;(2)見解析;(3).
【解析】
(1)在,由勾股定理可求DE, 由根據(jù)垂徑定理可得,由此即可解題;
(2)連接,由已知可得,進而可得,,再證明,從而可得,由三角形中位線定理即可得出結(jié)論;
(3)由可求,再分兩種情況討論:①當(dāng)點與點重合時,可直接求出結(jié)果,②當(dāng)點在時,連接,可證,從而
(1)解:如圖,
在中,,由勾股定理得
,
;
(2)連接,
,
,
點是中點,
,
,
是直徑,
,
,
,
,是的中位線,
;
(3)與相切于
,即
,
,
即,得
分兩種情況討論
①當(dāng)點與點重合時,
,,
②當(dāng)點在時,如圖,連接,
,又
,
,
,
,
綜上所述,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形AOBC的邊AO在x軸的負半軸上,邊OB在y軸的負半軸上.且AO=12,OB=9.拋物線y=﹣x2+bx+c經(jīng)過點A和點B.
(1)求拋物線的表達式;
(2)在第二象限的拋物線上找一點M,連接AM,BM,AB,當(dāng)△ABM面積最大時,求點M的坐標;
(3)點D是線段AO上的動點,點E是線段BO上的動點,點F是射線AC上的動點,連接EF,DF,DE,BD,且EF是線段BD的垂直平分線.當(dāng)CF=1時.
①直接寫出點D的坐標 ;
②若△DEF的面積為30,當(dāng)拋物線y=﹣x2+bx+c經(jīng)過平移同時過點D和點E時,請直接寫出此時的拋物線的表達式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為的網(wǎng)格中,點,點均落在格點上,為⊙的直徑.
(1)的長等于__________;
(2)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個以為斜邊、面積為的,并簡要說明點的位置是如何找到的(不要求證明)__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)的圖象經(jīng)過斜邊的中點,與直角邊相交于,連結(jié).若,則的周長為( )
A.12B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵市民節(jié)約用水,某市自來水公司按分段收費標準收費,右圖反映的是每月收水費y(元)與用水量x(噸)之間的函數(shù)關(guān)系
(1)小紅家五月份用水8噸,應(yīng)交水費_____元;
(2)按上述分段收費標準,小紅家三、四月份分別交水費36元和19.8元,問四月份比三月份節(jié)約用水多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對直角三角板如圖放置,點C在FD的延長線上,點B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,則CD的長度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,在內(nèi)自由移動,若的半徑為且圓心O在內(nèi)所能到達的區(qū)域的面積為則的周長為_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2過點A(﹣3,).
(1)求拋物線的解析式;
(2)已知直線l過點A,M(,0)且與拋物線交于另一點B,與y軸交于點C,求證:MC2=MAMB;
(3)若點P,D分別是拋物線與直線l上的動點,以OC為一邊且頂點為O,C,P,D的四邊形是平行四邊形,求所有符合條件的P點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com