【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結(jié)果保留根號).
【答案】(1)60;(2).
【解析】試題分析:
(1)由已知可判斷△ABD是等腰直角三角形;
(2)過點A作DC延長線的垂線,垂足為點F,則在Rt△AFC,求出FC的長,再求CD的長.
試題解析:
(1)根據(jù)題意得:BD∥AE,
∴∠ADB=∠EAD=45°,
∵∠ABD=90°,
∴∠BAD=∠ADB=45°,
∴BD=AB=60,
∴兩建筑物底部之間水平距離BD的長度為60米;
(2)延長AE、DC交于點F,
根據(jù)題意得四邊形ABDF為正方形,
∴AF=BD=DF=60,
在Rt△AFC中,∠FAC=30°,
∴CF=AFtan∠FAC=60×=20,
又∵FD=60,
∴CD=60﹣20,
∴建筑物CD的高度為(60﹣20)米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知C,D是線段AB上的兩個點,M,N分別為AC,BD的中點.
(1)若,求的長及MN的長;
(2)如果,用含a,b的式子表示MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3 ,且AC=12,則DE的長度是( )
A. 3B. 6C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將正整數(shù)1至2018按一定的規(guī)律排成下圖所示的10列,規(guī)定從上到下依次為1行、2行、3行…,從左到右依次為第1列至第10列.
(1)數(shù)2018在 行, 列;
(2)把圖中帶陰影的3個方相當作一個整體平移,設被框住的3個數(shù)中,最大的一個數(shù)為x.
①求被框住的三個數(shù)的和(用含x的式子表示);
②被框住的三個數(shù)的和能否于2017?若能,求出x的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家超市的促銷信息如下:
甲超市 | 消費金額 | 500元以內(nèi)(不含500元) | 500元以上(含500元) |
優(yōu)惠方式 | 不優(yōu)惠 | 500元部分(含500元)9折優(yōu)惠,超過500元部分給予8折優(yōu)惠 | |
乙超市 | 優(yōu)惠方式 | 全場8.8折 |
(1)若小白購買商品400元,則他到甲、乙兩家超市的實際消費金額分別為 元和 元;
(2)①若小白一次性購物金額為m(m>0)元,當在甲、乙兩家超市實際消費金額一樣時,求m的值:
②綜合上述分析,可以發(fā)現(xiàn): 時,去甲超市購物省錢; 時,去乙超市購物省錢.
(3)若小白一次先在甲超市購買100元商品,又在乙超市買500元商品,如果第二次他把第一次購買的商品合并為一次購買,他最多可以比第一次實際消費節(jié)省多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與x軸相交于A,B兩點(點A在點B的右側(cè)),與y軸交于點C,點D是拋物線的頂點,連接AD、BD.
求△ABD的面積;
如圖2,連接AC、BC,若點P是直線AC上方拋物線上一動點,過P作PE//BC交AC于點E,作PQ//y軸交AC于點Q,當△PQE周長最大時,將△PQE沿著直線AC平移,記移動中的△PQE為,連接,求△PQE的周長的最大值及的最小值;
如圖3,點G為x軸正半軸上一點,且OG=OC,連接CG,過G作GH⊥AC于點H,將△CGH繞點O順時針旋轉(zhuǎn)(),記旋轉(zhuǎn)中的△CGH為,在旋轉(zhuǎn)過程中,直線,分別與直線AC交于點M,N, 能否成為等腰三角形?若能直接寫出所有滿足條件的的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON=30°,公路PQ上A處距O點240米,如果火車行駛時,周圍200米以內(nèi)會受到噪音的影響,那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,求A處受噪音影響的時間。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)是( 。
(1)若,則
(2)若,則
(3)若,則
(4)若兩個角互補,則這兩個角是鄰補角
(5)有公共頂點且有一條公共邊的兩個角是鄰補角
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小東設計的“作矩形”的尺規(guī)作圖過程,已知:
求作:矩形
作法:如圖,
①作線段的垂直平分線角交于點;
②連接并延長,在延長線上截取
③連接
所以四邊形即為所求作的矩形
根據(jù)小東設計的尺規(guī)作圖過程
(1)使用直尺和圓規(guī),補全圖形:(保留作圖痕跡)
(2)完成下邊的證明:
證明: ,,
四邊形是平行四邊形( )(填推理的依據(jù))
四邊形是矩形( )(填推理的依據(jù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com