【題目】在下面的平面直角坐標(biāo)系中,畫出符合下列條件的點:
(1)畫出5個縱坐標(biāo)比橫坐標(biāo)大2的點,分別標(biāo)上,,,,.
(2)畫出5個橫坐標(biāo)是縱坐標(biāo)的2倍的點,分別標(biāo)上,,,,.
(3)觀察上面兩題所畫出的點,你有什么發(fā)現(xiàn),分別用語言敘述出來.
【答案】(1)見解析;(答案不唯一)(2)見解析;(答案不唯一)(3)第(1)小題所畫的點都在直線上;第(2)小題所畫的點都在直線上.(答案不唯一)
【解析】
(1)根據(jù)坐標(biāo)的定義,任意畫出5個縱坐標(biāo)比橫坐標(biāo)大2的點即可;
(2)根據(jù)坐標(biāo)的定義,任意畫出5個橫坐標(biāo)是縱坐標(biāo)的2倍的點即可;
(3)觀察可知,(1)、(2)兩小題各點分別在兩條直線上,得出解析式,寫出結(jié)論即可.
解:(1)、(2)描點如下圖:(答案不唯一)
(3)第(1)小題所畫的點都在直線上;第(2)小題所畫的點都在直線上.(答案不唯一)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
問題情境:正方形折疊中的數(shù)學(xué)
已知正方形紙片ABCD中,AB=4,點E是AB邊上的一點,點G是CE的中點,將正方形紙片沿CE所在直線折疊,點B的對應(yīng)點為點B′.
(1)如圖1,當(dāng)∠BCE=30°時,連接BG,B′G,求證:四邊形BEB′G是菱形;
深入探究:
(2)在CD邊上取點F,使DF=BE,點H是AF的中點,再將正方形紙片ABCD沿AF所在直線折疊,點D的對應(yīng)點為D′,順次連接B′,G,D′,H,B',得到四邊形B′GD′H.
請你從A,B兩題中任選一題作答,我選擇 題.
A題:如圖2,當(dāng)點B',D′均落在對角線AC上時,
①判斷B′G與D′H的數(shù)量關(guān)系與位置關(guān)系,并說明理由;
②直寫出此時點H,G之間的距離.
B題:如圖3,點M是AB的中點,MN∥BC交CD于點N,當(dāng)點B',D′均落在MN上時,
①判斷B′G與D′H的數(shù)量關(guān)系與位置關(guān)系,并說明理由;
②直接寫出此時點H,G之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,
(1)求證:△ACE≌△BCD;
(2)若DE=13,BD=12,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聯(lián)想三角形內(nèi)心的概念,我們可引入如下概念.
定義:到三角形的兩邊距離相等的點,叫做此三角形的準(zhǔn)內(nèi)心.
舉例:如圖1,若PD=PE,則點P為△ABC的準(zhǔn)內(nèi)心.
應(yīng)用:如圖2,BF為等邊三角形的角平分線,準(zhǔn)內(nèi)心P在BF上,且PF=BP,求證:點P是△ABC的內(nèi)心.
探究:已知△ABC為直角三角形,∠C=90°,準(zhǔn)內(nèi)心P在AC上,若PC=AP,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,點C的坐標(biāo)為(-18,0).
(1)求點B的坐標(biāo);
(2)若直線DE交梯形對角線BO于點D,交y軸于點E,且OE=4,∠OFE=45°,求直線DE的解析式;
(3)求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中∠ACB=90°,E在AB上,以AE為直徑的⊙O與BC相切于D,與AC相交于F,連接AD.
(1)求證:AD平分∠BAC;
(2)連接OC,如果∠B=30°,CF=1,求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠(yuǎn)處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:“噢,我知道路燈有多高了!”同學(xué)們,請你和小明一起解答這個問題:
(1)在圖中作出路燈O的位置,并作OP⊥l于P.
(2)求出路燈O的高度,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x+b的圖象過點A(0,3),點p是該直線上的一個動點,過點P分別作PM垂直x軸于點M,PN垂直y軸于點N,在四邊形PMON上分別截。篜C=MP,MB=OM,OE=ON,ND=NP.
(1)b= ;
(2)求證:四邊形BCDE是平行四邊形;
(3)在直線y=﹣x+b上是否存在這樣的點P,使四邊形BCDE為正方形?若存在,請求出所有符合的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與應(yīng)用:
閱讀1:a、b為實數(shù),且a>0,b>0,因為,所以,從而(當(dāng)a=b時取等號).
閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知: ,所以當(dāng)即時,函數(shù)的最小值為.
閱讀理解上述內(nèi)容,解答下列問題:
問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當(dāng)x=__________時,周長的最小值為__________.
問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時, 的最小值為__________.
問題3:某民辦學(xué)習(xí)每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學(xué)生生活費每人10元;三是其他費用.其中,其他費用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學(xué)生人數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com