【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,點(diǎn)O是AB中點(diǎn),連接OH,則OH=

【答案】
【解析】解:在BD上截取BE=CH,連接CO,OE,
∵∠ACB=90°CH⊥BD,
∵AC=BC=3,CD=1,
∴BD= ,
∴△CDH∽△BDC,
,
∴CH=
∵△ACB是等腰直角三角形,點(diǎn)O是AB中點(diǎn),
∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,
∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,
∵∠DCH=∠CBD,∴∠OCH=∠ABD,
在△CHO與△BEO中, ,
∴△CHO≌△BEO,
∴OE=OH,∠BOE=∠HOC,
∵OC⊥BO,
∴∠EOH=90°,
即△HOE是等腰直角三角形,
∵EH=BD﹣DH﹣CH= = ,
∴OH=EH× = ,
故答案為:

在BD上截取BE=CH,連接CO,OE,根據(jù)相似三角形的性質(zhì)得到 ,求得CH= ,根據(jù)等腰直角三角形的性質(zhì)得到AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,等量代換得到∠OCH=∠ABD,根據(jù)全等三角形的性質(zhì)得到OE=OH,∠BOE=∠HOC推出△HOE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)即可得到結(jié)論.本題考查了相似三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),正確的作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,直線l與⊙O相切于點(diǎn)C,AD⊥l,垂足為D,AD交⊙O于點(diǎn)E,連接OC、BE.若AE=6,OA=5,則線段DC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)O在對角線AC上,以O(shè)A的長為半徑的圓O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE.

(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH內(nèi)接于△ABC,且邊FG落在BC上,若AD⊥BC,BC=3,AD=2,EF= EH,那么EH的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點(diǎn)C的直線MNAB,DAB邊上一點(diǎn),過點(diǎn)DDEBC,交直線MNE,垂足為F,連接CDBE.

(1)求證:CEAD

(2)當(dāng)DAB中點(diǎn)時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE

求證:1∠CEB=∠CBE;

2)四邊形BCED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為3,E是BC上一點(diǎn),BE= ,Q是CD上一動點(diǎn),將△CEQ沿直線EQ折疊后,點(diǎn)C落在點(diǎn)P處,連接PA,點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動,當(dāng)PA的長度最小時,CQ的長為(
A.3 ﹣3
B.3﹣
C.
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD交于點(diǎn)O,COE=90°,OC平分∠AOF,COF=35°.

(1)求∠BOD的度數(shù);

(2)OE平分∠BOF嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案