【題目】(1)如圖1,矩形ABCD的對角線AC、BD交于點(diǎn)O,過點(diǎn)C作BD的平行線,過點(diǎn)D作AC的平行線,兩線交于點(diǎn)P,則四邊形CODP的形狀是 ;
(2)如圖2,若題目中的矩形變?yōu)榱庑,則四邊形CODP的形狀是 ;
(3)如圖3,若題目中的矩形變?yōu)檎叫危埮袛嗨倪呅?/span>CODP的形狀,并說明理由.
【答案】(1)四邊形CODP的形狀是菱形,理由見解析;(2)四邊形CODP的形狀是矩形,理由見解析;(3)四邊形CODP的形狀是正方形,理由見解析
【解析】
(1)根據(jù)矩形的性質(zhì)得出OD=OC,根據(jù)有一組對邊平行且相等的四邊形是平行四邊形得出四邊形CODP是平行四邊形,根據(jù)菱形的判定推出即可;
(2)根據(jù)菱形的性質(zhì)得出∠DOC=90°,根據(jù)有一組對邊平行且相等的四邊形是平行四邊形得出四邊形CODP是平行四邊形,根據(jù)矩形的判定推出即可;
(3)根據(jù)正方形的性質(zhì)得出OD=OC,∠DOC=90°,根據(jù)有一組對邊平行且相等的四邊形是平行四邊形得出四邊形CODP是平行四邊形,再根據(jù)正方形的判定推出即可.
(1)如圖1,四邊形CODP的形狀是菱形,
理由是:∵四邊形ABCD是矩形,
∴AC=BD,OA=OC=AC,OB=OD=BD,
∴OC=OD,
∵DP∥OC,DP=OC,
∴四邊形CODP是平行四邊形,
∵OC=OD,
∴平行四邊形CODP是菱形;
(2)如圖2,四邊形CODP的形狀是矩形,
理由是:∵四邊形ABCD是菱形,
∴AC⊥BD,
∴∠DOC=90°,
∵DP∥OC,DP=OC,
∴四邊形CODP是平行四邊形,
∵∠DOC=90°,
∴平行四邊形CODP是矩形;
故答案為:矩形;
(3)四邊形CODP的形狀是正方形,
理由是:∵四邊形ABCD是正方形,
∴AC⊥BD,AC=BD,OA=OC=AC,OB=OD=BD,
∴∠DOC=90°,OD=OC,
∵DP∥OC,DP=OC,
∴四邊形CODP是平行四邊形,
∵∠DOC=90°,OD=OC
∴平行四邊形CODP是正方形.
故答案為:正方形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解班級學(xué)生數(shù)學(xué)課前預(yù)習(xí)的具體情況,鄭老師對本班部分學(xué)生進(jìn)行了為期一個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達(dá)標(biāo),并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)C類女生有 名,D類男生有 名,將上面條形統(tǒng)計圖補(bǔ)充完整;
(2)扇形統(tǒng)計圖中“課前預(yù)習(xí)不達(dá)標(biāo)”對應(yīng)的圓心角度數(shù)是 ;
(3)為了共同進(jìn)步,鄭老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)機(jī)抽取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為1,AB、CD都是它的直徑,∠AOD=60°,點(diǎn)P在劣弧上運(yùn)動變化.
(1)問的大小隨點(diǎn)的變化而變化?若不變化,說明理由,若變化,求出其變化范圍;
(2)線段的長度大小隨點(diǎn)的變化而變化?若不變化,說明理由,若變化,求出其變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某小組同學(xué)為了測量對面樓AB的高度,分工合作,有的組員測得兩樓間距離為40米,有的組員在教室窗戶處測得樓頂端A的仰角為30°,底端B的俯角為10°,請你根據(jù)以上數(shù)據(jù),求出樓AB的高度.(精確到0.1米)
(參考數(shù)據(jù):sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正確的序號是 (把你認(rèn)為正確的都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:其中正確的有( )
①;;②方程有兩個不等的實(shí)數(shù)根;③隨的增大而增大;④.
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,∠BAC=120°,點(diǎn)D、F分別為AB、AC中點(diǎn),ED⊥AB,GF⊥AC,若BC=15cm,求EG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,點(diǎn)為的中點(diǎn),點(diǎn)在上,且,點(diǎn)為直線上一動點(diǎn),的最大值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商場預(yù)測某品牌運(yùn)動服能夠暢銷,就用32000元購進(jìn)了一批這種運(yùn)動服,上市后很快脫銷,商場又用68000元購進(jìn)第二批這種運(yùn)動服,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價多了10元.
(1)該商場兩次共購進(jìn)這種運(yùn)動服多少套?
(2)如果這兩批運(yùn)動服每套的售價相同,且全部售完后總利潤不低于20%,那么每套售價至少是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com