【題目】綜合題。
(1)計(jì)算:4sin60°+|3﹣ |﹣( 1+(π﹣2017)0
(2)解方程組:

【答案】
(1)解:原式=4× +2 ﹣3﹣2+1

=4 ﹣4;


(2)解:

①+②×5得:13x=13,

解得:x=1,

把x=1代入②得:2﹣y=1,

解得:y=1,

所以原方程組的解為:


【解析】(1)根據(jù)零指數(shù)冪,負(fù)整數(shù)指數(shù)冪,絕對(duì)值,特殊角的三角函數(shù)值分別請(qǐng)求出每一部分的值,再求出即可;(2)①+②×5得出13x=13,求出x,把x=1代入②求出y即可.
【考點(diǎn)精析】掌握零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是解答本題的根本,需要知道零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD,AB=6,點(diǎn)E在邊CD上,CE=2DE,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤SFCA=3.6,其中正確結(jié)論是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明所在的學(xué)校加強(qiáng)學(xué)生的體育鍛煉,準(zhǔn)備從某體育用品商店一次購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買2個(gè)籃球和3個(gè)足球共需310元,購(gòu)買5個(gè)籃球和2個(gè)足球共需500元.
(1)每個(gè)籃球和足球各需多少元?
(2)根據(jù)實(shí)際情況,需從該商店一次性購(gòu)買籃球和足球功60個(gè),要求購(gòu)買籃球和足球的總費(fèi)用不超過(guò)4000元,那么最多可以購(gòu)買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點(diǎn)C是弧AB的中點(diǎn),點(diǎn)D在OB上,點(diǎn)E在OB的延長(zhǎng)線上,當(dāng)正方形CDEF的邊長(zhǎng)為2時(shí),陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣2經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(4,0),與y軸交于點(diǎn)C.
附:閱讀材料
法國(guó)弗朗索瓦韋達(dá)最早發(fā)現(xiàn)一元二次方程中根與系數(shù)的關(guān)系為:兩根之和等于一次項(xiàng)系數(shù)與二次項(xiàng)系數(shù)之比的相反數(shù),兩根之積等于常數(shù)項(xiàng)羽二次項(xiàng)系數(shù)之比,人們稱之為韋達(dá)定理.
即:設(shè)一元二次方程ax2+bx+c=0的兩根為x1、x2 , 則:x1+x2=﹣ ,x1x2= 能靈活運(yùn)用韋達(dá)定理,有時(shí)可以使解題更為簡(jiǎn)單.

(1)求拋物線的解析式;
(2)以點(diǎn)A為圓心,作于直線BC相切的⊙A,求⊙A的面積;
(3)將直線BC向下平移n個(gè)單位后與拋物線交于點(diǎn)M、N,且線段MN=2CB,求直線MN的解析式及平移距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點(diǎn).

(1)求出拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;
(3)點(diǎn)P是線段AB上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過(guò)點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線于點(diǎn)M,過(guò)點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN , 求出 的值,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:|2﹣ |+( ﹣2016)0+2cos30°+( 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+2與x軸、y軸分別交于點(diǎn)A(﹣1,0)和點(diǎn)B,與反比例函數(shù)y= 的圖象在第一象限內(nèi)交于點(diǎn)C(1,n).
(1)求k的值;
(2)求反比例函數(shù)的解析式;
(3)過(guò)x軸上的點(diǎn)D(a,0)作平行于y軸的直線l(a>1),分別與直線AB和雙曲線y= 交于點(diǎn)P、Q,且PQ=2QD,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一種某小區(qū)的兩幢10層住宅樓間的距離為AC=30m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3m.假設(shè)某一時(shí)刻甲樓在乙樓側(cè)面的影長(zhǎng)EC=h,太陽(yáng)光線與水平線的夾角為α.
(1)用含α的式子表示h(不必指出α的取值范圍);
(2)當(dāng)α=30°時(shí),甲樓樓頂B點(diǎn)的影子落在乙樓的第幾層?若α每小時(shí)增加15°,從此時(shí)起幾小時(shí)后甲樓的影子剛好不影響乙樓采光?

查看答案和解析>>

同步練習(xí)冊(cè)答案