【題目】閱讀材料1:
對(duì)于兩個(gè)正實(shí)數(shù),由于,所以,即,所以得到,并且當(dāng)時(shí),
閱讀材料2:
若,則 ,因?yàn)?/span>,,所以由閱讀材料1可得:,即的最小值是2,只有時(shí),即=1時(shí)取得最小值.
根據(jù)以上閱讀材料,請(qǐng)回答以下問(wèn)題:
(1)比較大小
(其中≥1); -2(其中<-1)
(2)已知代數(shù)式變形為,求常數(shù)的值
(3)當(dāng)= 時(shí),有最小值,最小值為 (直接寫(xiě)出答案).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的半徑為5,弦AB=6,P是AB上任意一點(diǎn),點(diǎn)C是劣弧的中點(diǎn),若△POC為直角三角形,則PB的長(zhǎng)度( 。
A. 1 B. 5 C. 1或5 D. 2或4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,3),點(diǎn)B和點(diǎn)D的坐標(biāo)分別為(m,0),(n,4),且m>0,四邊形ABCD是矩形.
(1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),求m,n的值;
(2)在圖2中,畫(huà)出矩形ABCD,簡(jiǎn)要說(shuō)明點(diǎn)C,D的位置是如何確定的,并直接用含m的代數(shù)式表示點(diǎn)C的坐標(biāo);
(3)探究:當(dāng)m為何值時(shí),矩形ABCD的對(duì)角線AC的長(zhǎng)度最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(m,n)(m<0,
n>0),E點(diǎn)在邊BC上,F點(diǎn)在邊OA上.將矩形OABC沿EF折疊,點(diǎn)B正好與點(diǎn)O重合,雙曲線過(guò)點(diǎn)E.
(1) 若m=-8,n =4,直接寫(xiě)出E、F的坐標(biāo);
(2) 若直線EF的解析式為,求k的值;
(3) 若雙曲線過(guò)EF的中點(diǎn),直接寫(xiě)出tan∠EFO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點(diǎn).
(1)試說(shuō)明△OBC是等腰三角形;
(2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新園小區(qū)計(jì)劃在一塊長(zhǎng)為20米,寬12米的矩形場(chǎng)地上修建三條互相垂直的長(zhǎng)方形甬路(一條橫向、兩條縱向,且橫向、縱向的寬度比為3:2),其余部分種花草.若要使種花草的面積達(dá)到144米2.則橫向的甬路寬為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店新進(jìn)一種臺(tái)燈.這種臺(tái)燈的成本價(jià)為每個(gè)30元,經(jīng)調(diào)查發(fā)現(xiàn),這種臺(tái)燈每天的銷售量y(單位:個(gè))是銷售單價(jià)x(單位:元)(30≤x≤60)的一次函數(shù).
x | 30 | 35 | 40 | 45 | 50 |
y | 30 | 25 | 20 | 15 | 10 |
(1)求銷售量y與銷售單價(jià)x之間的函數(shù)表達(dá)式;
(2)設(shè)這種臺(tái)燈每天的銷售利潤(rùn)為w元.這種臺(tái)燈銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品現(xiàn)在的售價(jià)為每件60元,每個(gè)星期可賣(mài)出300件,市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)1元,每個(gè)星期要少賣(mài)出10件;每降價(jià)1元,每個(gè)星期可多賣(mài)出20件.已知商品進(jìn)價(jià)為每件40元,設(shè)每件商品的售價(jià)為x元(且x為正整數(shù)),每個(gè)星期的銷售量為y件.
(1)求y與x的函數(shù)關(guān)系并直接寫(xiě)出自變量x的取值范圍;
(2)設(shè)每星期的銷售利潤(rùn)為W,請(qǐng)直接寫(xiě)出W與x的關(guān)系式;
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)星期可獲得最大利潤(rùn)?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com