【題目】已知二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,且當(dāng)時(shí)二次函數(shù)的函數(shù)值相等.

)求實(shí)數(shù)、的值.

)如圖,動(dòng)點(diǎn)、同時(shí)從點(diǎn)出發(fā),其中點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度沿邊向終點(diǎn)運(yùn)動(dòng),點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度沿射線方向運(yùn)動(dòng),當(dāng)點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.連接,將沿翻折,使點(diǎn)落在點(diǎn)處,得到

①是否存在某一時(shí)刻,使得為直角三角形?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

②設(shè)重疊部分的面積為,求關(guān)于的函數(shù)關(guān)系式.

【答案】(1),;(2)①存在,;②當(dāng)時(shí), ;當(dāng)時(shí),S當(dāng)時(shí),.

【解析】

(1)根據(jù)拋物線圖象經(jīng)過(guò)點(diǎn)A以及當(dāng)x=-2x=5時(shí)二次函數(shù)的函數(shù)值y相等兩個(gè)條件,列出方程組求出待定系數(shù)的值.
(2)①首先由拋物線解析式能得到點(diǎn)A、B、C三點(diǎn)的坐標(biāo),則線段OA、OB、OC的長(zhǎng)可求,進(jìn)一步能得出AB、BC、AC的長(zhǎng);首先用t 表示出線段AD、AE、AF(即DF)的長(zhǎng),則根據(jù)AE、EF、OA、OC的長(zhǎng)以及公共角∠OAC能判定AEF、AOC相似,那么AEF也是一個(gè)直角三角形,及∠AEF是直角;若DCF是直角,可分成三種情況討論:
1、點(diǎn)C為直角頂點(diǎn),由于ABC恰好是直角三角形,且以點(diǎn)C為直角頂點(diǎn),所以此時(shí)點(diǎn)B、D重合,由此得到AD的長(zhǎng),進(jìn)而求出t的值;
2、點(diǎn)D為直角頂點(diǎn),此時(shí)∠CDB與∠CBD恰好是等角的余角,由此可證得OB=OD,再得到AD的長(zhǎng)后可求出t的值;
3、點(diǎn)F為直角頂點(diǎn),當(dāng)點(diǎn)F在線段AC上時(shí),∠DFC是銳角,而點(diǎn)F在射線AC的延長(zhǎng)線上時(shí),∠DFC又是鈍角,所以這種情況不符合題意.
②此題需要分三種情況討論:
1、當(dāng)點(diǎn)E在點(diǎn)A與線段AB中點(diǎn)之間時(shí),兩個(gè)三角形的重疊部分是整個(gè)DEF;
2、當(dāng)點(diǎn)E在線段AB中點(diǎn)與點(diǎn)O之間時(shí),重疊部分是個(gè)不規(guī)則四邊形,那么其面積可由大直角三角形與小鈍角三角形的面積差求得;
3、當(dāng)點(diǎn)E在線段OB上時(shí),重疊部分是個(gè)小直角三角形.

)由題意得:,解得:,

)①由()知,

,,

,,

,,

,

,且,

,,

又∵,

,

∴翻折后,落在處,∴,

,

,點(diǎn)上時(shí),

i)∴若為直角頂點(diǎn),則重合,

,,如圖

ii)若為直角頂點(diǎn),∵,

,

,

,

,∴,

,

,

,

,如圖

當(dāng)點(diǎn)延長(zhǎng)線上時(shí),,為鈍角三角形,

綜上所述,

i)當(dāng)時(shí),重疊部分為,

ii)當(dāng)時(shí),設(shè)相交于點(diǎn),則重疊部分為四邊形,如圖,

過(guò)點(diǎn),設(shè),則,

,

,

iii)當(dāng)時(shí),重疊部分為,如圖

,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的直徑,是弦,,,

求證:的切線;

,求的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?

(3)過(guò)點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)PPEx軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線l:y=x+mx軸于點(diǎn)A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,與直線l交于點(diǎn)D,已知CDx軸平行,且SACD:SABD=3:5.

(1)求點(diǎn)A的坐標(biāo);

(2)求此二次函數(shù)的解析式;

(3)點(diǎn)P為直線l上一動(dòng)點(diǎn),將線段AC繞點(diǎn)P順時(shí)針旋轉(zhuǎn)α°(0°<α°<360°)得到線段A'C'(點(diǎn)A,A'是對(duì)應(yīng)點(diǎn),點(diǎn)C,C'是對(duì)應(yīng)點(diǎn)).請(qǐng)問(wèn):是否存在這樣的點(diǎn)P,使得旋轉(zhuǎn)后點(diǎn)A'和點(diǎn)C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請(qǐng)直接寫(xiě)出點(diǎn)A'的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】金秋十月,丹桂飄香,重慶雙福育才中學(xué)迎來(lái)了首屆行知?jiǎng)?chuàng)新科技大賽,初二年級(jí)某班共有18人報(bào)名參加航海組,航空組和無(wú)人機(jī)組三個(gè)項(xiàng)目組的比賽(每人限參加一項(xiàng)),其中航海組的同學(xué)比無(wú)人機(jī)組的同學(xué)的兩倍少3人,航空組的同學(xué)不少于3人但不超過(guò)9人,班級(jí)決定為航海組的每位同學(xué)購(gòu)買(mǎi)2個(gè)航海模型,為航空組的每位同學(xué)購(gòu)買(mǎi)3個(gè)航空模型,為無(wú)人機(jī)組的每位同學(xué)購(gòu)買(mǎi)若干個(gè)無(wú)人機(jī)模型,已知航海模型75元每個(gè),航空模型98元每個(gè),無(wú)人機(jī)模型165元每個(gè),若購(gòu)買(mǎi)這三種模型共需花費(fèi)6114元,則其中購(gòu)買(mǎi)無(wú)人機(jī)模型的費(fèi)用是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,.

1)如圖1,若直線相交于,過(guò)點(diǎn),連接并延長(zhǎng),使得,過(guò)點(diǎn),證明:.

2)如圖2,若直線的延長(zhǎng)線相交于,過(guò)點(diǎn),連接并延長(zhǎng),使得,過(guò)點(diǎn)的延長(zhǎng)線于,探究:、之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,,,,

請(qǐng)說(shuō)明的理由;

(2)可以經(jīng)過(guò)圖形的變換得到,請(qǐng)你描述這個(gè)變換;

的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四個(gè)形狀大小相同的等腰三角形按如圖所示方式擺放,已知,,若點(diǎn)落在的延長(zhǎng)線上,則圖中陰影部分的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程

若方程的一個(gè)根為,求的值及另一個(gè)根;

若該方程根的判別式的值等于,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案