【題目】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列圖形中⊙O與△ABC的某兩條邊或三邊所在的直線相切,則⊙O的半徑為的是( 。
A. B.
C. D.
【答案】C
【解析】
A.由三角形的內(nèi)切圓的性質(zhì),即可求得⊙O的半徑;
B.易證得△ADO∽△ACB,然后由相似三角形的對(duì)應(yīng)邊成比例,即可求得⊙O的半徑;
C.易證得四邊形ODCE是正方形,然后由平行線分線段成比例定理,求得⊙O的半徑;
D.易證得四邊形ODCE是正方形,利用切線長(zhǎng)定理,由勾股定理即可求得⊙O的半徑.
設(shè)⊙O的半徑為r. A.
∵⊙O是△ABC內(nèi)切圓,∴S△ABC(a+b+c)rab,∴r;
B.如圖,連接OD,則OD=OC=r,OA=b﹣r.
∵AD是⊙O的切線,∴OD⊥AB,即∠AOD=∠C=90°,∴△ADO∽△ACB,∴OA:AB=OD:BC,即(b﹣r):c=r:a,解得:r;
C.連接OE,OD.
∵AC與BC是⊙O的切線,∴OE⊥BC,OD⊥AC,∴∠OEB=∠ODC=∠C=90°,∴四邊形ODCE是矩形.
∵OD=OE,∴矩形ODCE是正方形,∴EC=OD=r,OE∥AC,∴OE:AC=BE:BC,∴r:b=(a﹣r):a,∴r;
D.設(shè)AC、BA、BC與⊙O的切點(diǎn)分別為D、F、E,連接OD、OE.
∵AC、BE是⊙O的切線,∴∠ODC=∠OEC=∠DCE=90°,∴四邊形ODCE是矩形.
∵OD=OE,∴矩形ODCE是正方形,即OE=OD=CD=r,則AD=AF=b﹣r.
連接OB,OF,由勾股定理得:BF2=OB2﹣OF2,BE2=OB2﹣OE2.
∵OB=OB,OF=OE,∴BF=BE,則BA+AF=BC+CE,c+b﹣r=a+r,即r.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】不能構(gòu)成三角形的三條整數(shù)長(zhǎng)度的線段的長(zhǎng)度和的最小值為1+1+2=4;若四條整數(shù)長(zhǎng)度的線段中,任意三條不能構(gòu)成三角形,則該四條線段的長(zhǎng)度和的最小值為1+1+2+3=7;……,依此規(guī)律,若八條整數(shù)長(zhǎng)度的線段中,任意三條不能構(gòu)成三角形,則該八條線段的長(zhǎng)度和的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過(guò)點(diǎn)E作GE∥AB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn), .將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)得,連接.
(1)求證: 是等邊三角形;
(2)當(dāng)時(shí),試判斷的形狀,并說(shuō)明理由;
(3)探究:當(dāng)為多少度時(shí), 是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,甲、乙兩船同時(shí)由港口A出發(fā)開(kāi)往海島B,甲船沿某一方向直航140海里的海島B,其速度為14海里/小時(shí);乙船速度為20海里/小時(shí),先沿正東方向航行3小時(shí)后,到達(dá)C港口接旅客,停留1小時(shí)后再轉(zhuǎn)向北偏東30°方向開(kāi)往B島,其速度仍為20海里/小時(shí).
(1)求海島B到航線AC的距離;
(2)甲船在航行至P處,發(fā)現(xiàn)乙船在其正東方向的Q處,問(wèn)此時(shí)兩船相距多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開(kāi)啟后,把手AM的仰角α=37°,此時(shí)把手端點(diǎn)A、出水口B和點(diǎn)落水點(diǎn)C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=,cos37°=,tan37°=)
求把手端點(diǎn)A到BD的距離;
求CH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠ACB=90°,BC=2,AC=4,點(diǎn)D在射線BC上,以點(diǎn)D為圓心,BD為半徑畫(huà)弧交邊AB于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AB交邊AC于點(diǎn)F,射線ED交射線AC于點(diǎn)G.
(1)求證:△EFG∽△AEG;
(2)設(shè)FG=x,△EFG的面積為y,求y關(guān)于x的函數(shù)解析式并寫(xiě)出定義域;
(3)聯(lián)結(jié)DF,當(dāng)△EFD是等腰三角形時(shí),請(qǐng)直接寫(xiě)出FG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】身高相等的四名同學(xué)甲、乙、丙、丁參加風(fēng)箏比賽,四人放出風(fēng)箏的線長(zhǎng)、線與地面的夾角如下表(假設(shè)風(fēng)箏線是拉直的),則四名同學(xué)所放的風(fēng)箏中最高的是( 。
同學(xué) | 甲 | 乙 | 丙 | 丁 |
放出風(fēng)箏線長(zhǎng) | 140m | 100m | 95m | 90m |
線與地面夾角 | 30° | 45° | 45° | 60° |
A、甲B、乙
C、丙D、丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=2BC,在直線BC或AC上取一點(diǎn)P,使得△PAB為等腰三角形,則符合條件的點(diǎn)P共有( )
A. 4個(gè) B. 5個(gè) C. 6個(gè) D. 7個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com