【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④當(dāng)x>1時(shí),y隨x的增大而增大,正確的是( )
A. ①③B. ②④C. ①②④D. ②③④
【答案】D
【解析】
①依據(jù)拋物線開口方向可確定a的符號、與y軸交點(diǎn)確定c的符號進(jìn)而確定ac的符號;②由拋物線與x軸交點(diǎn)的坐標(biāo)可得出一元二次方程ax2+bx+c=0的根;③由當(dāng)x=1時(shí)y<0,可得出a+b+c<0;④觀察函數(shù)圖象并計(jì)算出對稱軸的位置,即可得出當(dāng)x>1時(shí),y隨x的增大而增大.
①由圖可知:,,
,故①錯(cuò)誤;
②由拋物線與軸的交點(diǎn)的橫坐標(biāo)為與,
方程的根是,,故②正確;
③由圖可知:時(shí),,
,故③正確;
④由圖象可知:對稱軸為:,
時(shí),隨著的增大而增大,故④正確;
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,往豎直放置的在A處由短軟管連接的粗細(xì)均勻細(xì)管組成的“U”形裝置中注入一定量的水,水面高度為6cm,現(xiàn)將右邊細(xì)管繞A處順時(shí)針旋轉(zhuǎn)60°到AB位置,且左邊細(xì)管位置不變,則此時(shí)“U”形裝置左邊細(xì)管內(nèi)水柱的高度約為( 。
A. 4cmB. 2cmC. 3cmD. 8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,n+1個(gè)直角邊長為3的等腰直角三角形△AB1C1,△C1B2C2……,斜邊在同一直線上,設(shè)△B2D1C1的面積為S1,△B3D2C2的面積為S2,…,△Bn+1Dnn的面積為Sn,則S1=_____;S2=_____;Sn=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點(diǎn)D,E為BC的中點(diǎn),連接DE并延長交AC的延長線于點(diǎn)F.
(1)求證:DE是⊙O的切線;
(2)若CF=2,DF=4,求⊙O直徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ACEF為正方形,以AC為斜邊作Rt△ABC,∠B=90°,AB=4,BC=2,延長BC至點(diǎn)D,使CD=5,連接DE.
(1)求正方形的邊長;
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)M的坐標(biāo)為(0,2),以M為圓心,以4為半徑的圓與x軸相交于點(diǎn)B、C,與y軸正半軸相交于點(diǎn)A過A作AE∥BC,點(diǎn)D為弦BC上一點(diǎn),AE=BD,連接AD,EC.
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)求證:AD=CE;
(3)若點(diǎn)P是弧BAC上一動(dòng)點(diǎn)(P點(diǎn)與A、B點(diǎn)不重合),過點(diǎn)P的⊙M的切線PG交x軸于點(diǎn)G,若△BPG為直角三角形,試求出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O經(jīng)過菱形ABCD的三個(gè)頂點(diǎn)A、C、D,且與AB相切于點(diǎn)A
(1)求證:BC為⊙O的切線;
(2)求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與y軸交于點(diǎn)A(0,2),對稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點(diǎn),點(diǎn)B在對稱軸左側(cè),BC=6.
(1)求此拋物線的解析式.
(2)點(diǎn)P在x軸上,直線CP將△ABC面積分成2:3兩部分,請直接寫出P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐:制作無蓋盒子
任務(wù)一:如圖1,有一塊矩形紙板,長是寬的2倍,要將其四角各剪去一個(gè)正方形,折成高為4cm,容積為的無蓋長方體盒子紙板厚度忽略不計(jì).
請?jiān)趫D1的矩形紙板中畫出示意圖,用實(shí)線表示剪切線,虛線表示折痕.
請求出這塊矩形紙板的長和寬.
任務(wù)二:圖2是一個(gè)高為4cm的無蓋的五棱柱盒子直棱柱,圖3是其底面,在五邊形ABCDE中,,,,.
試判斷圖3中AE與DE的數(shù)量關(guān)系,并加以證明.
圖2中的五棱柱盒子可按圖4所示的示意圖,將矩形紙板剪切折合而成,那么這個(gè)矩形紙板的長和寬至少各為多少cm?請直接寫出結(jié)果圖中實(shí)線表示剪切線,虛線表示折痕紙板厚度及剪切接縫處損耗忽略不計(jì).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com