【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作EF∥AD,與AC、DC分別交于點G、F,H為CG的中點,連接DE、EH、DH、FH.下列結論:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若,則3S△EDH=13S△DHC,其中結論正確的有________(填寫序號).
【答案】① ② ③
【解析】試題解析:①∵四邊形ABCD為正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG為等腰直角三角形,
∴GF=FC,
∵EG=EF-GF,DF=CD-FC,
∴EG=DF,故①正確;
②∵△CFG為等腰直角三角形,H為CG的中點,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,
,
∴△EHF≌△DHC(SAS),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正確;
③∵△CFG為等腰直角三角形,H為CG的中點,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,
,
∴△EHF≌△DHC(SAS),故③正確;
④錯誤,當,則3S△EDH=13S△DHC,
理由如下:∵,
∴AE=2BE,
∵△CFG為等腰直角三角形,H為CG的中點,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD為等腰直角三角形,
過H點作HM垂直于CD于M點,如圖所示:
設HM=x,則DM=5x,DH= x,CD=6x,
則S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,
∴3S△EDH=13S△DHC,故④錯誤.
科目:初中數(shù)學 來源: 題型:
【題目】某商人在一次買賣中均以120元賣出兩件衣服,一件賺25%,一件賠25%,在這次交易中,該商人( )
A.賺16元
B.賠16元
C.不賺不賠
D.無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方程x2+x﹣12=0的兩個根為( )
A.x1=﹣2,x2=6
B.x1=﹣6,x2=2
C.x1=﹣3,x2=4
D.x1=﹣4,x2=3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知, 是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點.
(1)求一次函數(shù)、反比例函數(shù)的關系式;
(2)求△AOB的面積.
(3)當自變量x滿足什么條件時,y1>y2 .(直接寫出答案)
(4)將反比例函數(shù)的圖象向右平移n(n>0)個單位,得到的新圖象經過點(3,-4),求對應的函數(shù)關系式y3.(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com